Metals and Materials International

, Volume 22, Issue 2, pp 222–228 | Cite as

Critical quenching rate for high hardness and good exfoliation corrosion resistance of Al-Zn-Mg-Cu alloy plate

  • Dongfeng Li
  • Bangwen Yin
  • Yue Lei
  • Shengdan Liu
  • Yunlai Deng
  • Xinming Zhang


By means of the end-quenching technique, we investigated the relationship between quenching rate and hardness as well as exfoliation corrosion rating for Al-2.21 Zn-3.59 Mg-0.45 Cu-0.038 Zr (at%) alloy plate. In order to achieve an exfoliation corrosion rating of P or EA, the quenching rate must be greater than approximately 460 °C/min and 300 °C/min, respectively, and the drop degree in hardness should simultaneously be lower than approximately 2.0% and 3.5%, respectively. The results of microstructural and microchemical examination using a scanning transmission electron microscope indicate that a lower quenching rate leads to a higher content of Zn, Mg, and Cu in the grain-boundary particles and a greater width of precipitate-free zones near grain boundaries; therefore, grain-boundary particles with Zn and Mg contents less than approximately 13.39% and 10.23% (at%), respectively, and precipitate-free zones near grain boundaries with widths less than about 107 nm can contribute to an exfoliation corrosion rating better than EA. The amount of quench-induced η-phase particles, which lead to lower hardness, increases with decreasing quenching rate, and the area fraction of these particles is approximately 2.9% at a quenching rate of 300 °C/min.


Al-Zn-Mg-Cu alloy microstructure hardness test corrosion STEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Liu, C. Li, S. Han, Y. Deng, and X. Zhang, J. Alloy. Compd. 625, 34 (2015).CrossRefGoogle Scholar
  2. 2.
    Y. Deng, L. Wan, Y. Zhang, and X. Zhang, J. Alloy. Compd. 509, 4636 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Liu, Q. Zhong, Y. Zhang, W. Liu, and X. Zhang, Mater. Design 31, 3116 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Y. Chen, K. H. Chen, and G. S. Peng, Trans. Nonferrous Met. Soc. China 22, 47 (2012).CrossRefGoogle Scholar
  5. 5.
    S. D. Liu, B. Chen, C. B. Li, Y. Dai, Y. L. Deng, and X. M. Zhang, Corros. Sci. 91, 203 (2015).CrossRefGoogle Scholar
  6. 6.
    G. P. Dolan and J. S. Robinson, J. Mater. Proc. Technol. 153-154, 346 (2004).CrossRefGoogle Scholar
  7. 7.
    C. E. Bates and G. E. Totten, Heat Treat. Met. 4, 89 (1988).Google Scholar
  8. 8.
    S. Liu, W. Liu, Y. Zhang, X. Zhang, and Y. Deng, J. Alloy. Compd. 507, 53 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Liu, C. Li, Y. Deng, X. Zhang, and Q. Zhong, Met. Mater. Int. 20, 195 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Tang, H. Chen, X. Zhang, S. Liu, W. Liu, H. Ouyang, and H. Li, Trans. Nonferrous Met. Soc. China 22, 1255 (2012).CrossRefGoogle Scholar
  11. 11.
    S. T. Lim, S. J. Yun, S. W. Nam, Mater. Sci. Eng. A 371, 82 (2004).CrossRefGoogle Scholar
  12. 12.
    X. M. Zhang, W. J. Liu, S. D. Liu, M. Z. Zhou, Mater. Sci. Eng. A 528, 795 (2011).CrossRefGoogle Scholar
  13. 13.
    L. Huang, K. Chen, and S. Li, Mater. Sci. Eng. B 177, 862 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Chen, K. Chen, and G. Peng, Mater. Design 35, 93 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Song, X. Zhang, S. Liu, Q. Tan, and D. Li, Corros. Sci. 78, 276 (2014).CrossRefGoogle Scholar
  16. 16.
    C. Li, S. Liu, G. Wang, Y. Jin, and X. Zhang, Chinese J. Mater. Res. 27, 259 (2013).Google Scholar
  17. 17.
    J. W. Newkirk and D. S. Mackenzie, J. Mater. Eng. Perform. 9, 408 (2000).CrossRefGoogle Scholar
  18. 18.
    B. W. Ying, Master’s Thesis, pp.41–48, Central South University, Changsha, China (2015).Google Scholar
  19. 19.
    GB/T 22639-2008, Test Method of Exfoliation Corrosion for Wrought Aluminium and Aluminium Alloys, pp.1–3, Standards Press of China, Beijing, China (2009).Google Scholar
  20. 20.
    D. McNaughtan, M. Worsfold, and M. J. Robinson, Corros. Sci. 45, 2377 (2003).CrossRefGoogle Scholar
  21. 21.
    S. D. Liu, Y. B. Yuan, C. B. Li, J. H. You, and X. M. Zhang, Met. Mater. Int. 18, 679 (2012).CrossRefGoogle Scholar
  22. 22.
    J. F. Li, Z. W. Peng, and C. X. Li, Trans. Nonferrous Met. Soc. China 18, 755 (2008).CrossRefGoogle Scholar
  23. 23.
    S. J. Pennycook and D. E. Jesson, Ultramicroscopy 37, 14 (1991).CrossRefGoogle Scholar
  24. 24.
    D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., pp.303–305, CRC Press, Florida (2009).Google Scholar
  25. 25.
    J. Buha, R. N. Lumley, and A. G. Crosky, Mater. Sci. Eng. A 492, 1 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Liu, C. Li, Y. Deng, and X. Zhang, Acta Metall. Sinica. 48, 343 (2012).CrossRefGoogle Scholar
  27. 27.
    N. Birbilis and R. G. Buchheit, J. Electrochem. Soc. 152, 140 (2005).CrossRefGoogle Scholar
  28. 28.
    J. F. Li, Z. Q. Zheng, S. C. Li, W. J. Chen, W. D. Ren, and X. S. Zhao, Corros. Sci. 49, 2436 (2007).CrossRefGoogle Scholar
  29. 29.
    S. P. Knight, N. Birbilis, and B. C. Muddle, Corros. Sci. 52, 4073 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dongfeng Li
    • 1
    • 2
  • Bangwen Yin
    • 1
    • 2
  • Yue Lei
    • 1
    • 2
  • Shengdan Liu
    • 1
    • 2
    • 3
  • Yunlai Deng
    • 1
    • 2
    • 3
  • Xinming Zhang
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPR China
  2. 2.Key Laboratory of Nonferrous Metal Materials Science and EngineeringMinistry of EducationChangshaPR China
  3. 3.Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation CenterChangshaPR China

Personalised recommendations