Advertisement

Metals and Materials International

, Volume 22, Issue 2, pp 260–266 | Cite as

Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap

  • Gil-Geun Lee
  • Gook-Hyun Ha
Article

Abstract

The effects of mechanical milling on the carbothermal reduction of oxidized WC/Co hardmetal scrap with solid carbon were examined. Mixed powders were manufactured by milling the WC/Co hard metal scrap oxide and carbon powder in either a tumbler-ball mill or a planetary-ball mill. The milling type affected the carbothermal reduction of the oxide owing to the differing collision energies (mechanical milling energies) in the mills. The hardmetal scrap oxide powder (WO3, CoWO4) milled at high energy was more greatly reduced and at a lower temperature than that milled at lower mechanical energy. The formation of WC by the carburization reaction with solid carbon reached completion at a lower temperature after higher-energy milling than after lower-energy milling. The WC/Co composite particles synthesized by the combined oxidationmechanical milling-carbothermal reduction process were smaller when the initial powder was milled at higher mechanical energy.

Keywords

mechanical milling powder processing phase transformation hardmetal tungsten carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. A. Brookes, World Directory and Handbook of Hardmetals and Hard Materials, Sixth ed., pp.9–20, International Carbide Data, Hertfordshire (1996).Google Scholar
  2. 2.
    K. Halada, J. Jap. Soc. Powder & Powder Metall. 57, 87 (2010).CrossRefGoogle Scholar
  3. 3.
    E. Lassner and W. D. Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, pp.377–385, Bloating-Crushing Process Kluwer Academic Plenum Publishers, New York (1999).Google Scholar
  4. 4.
    C. S. Freemantle, N. Sacks, M. Topic, and C. A. Pineda-Vargas, Int. J. Refrac. Met. Hard Mater. 44, 94 (2014).CrossRefGoogle Scholar
  5. 5.
    E. Altuncu, F. Ustel, A. Turk, S. Ozturk, and G. Erdogan, Mater. & Technol. 47, 115 (2013).Google Scholar
  6. 6.
    E. Lassner, Int. J. Refrac. Met. Hard Mater. 13, 35 (1995).CrossRefGoogle Scholar
  7. 7.
    T. Ishida, T. Itakura, H. Moriguchi, and A. Ikegaya, SEI Technical Review 75, 38 (2012).Google Scholar
  8. 8.
    J. C. Lee, E. Y. Kim, J. H. Kim, W. Kim, B. S. Kim, and B. D. Pandey, Int. J. Refrac. Met. Hard Mater. 29, 365 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Sampath and T. S. Sudarshan, Powder Metall. 45, 21 (2002).CrossRefGoogle Scholar
  10. 10.
    J. C. Lin, J. Y. Lin and S. L. Lee, U. S. Patent, No.5384016 (1995).Google Scholar
  11. 11.
    A. M. Human and H. E. Exner, Mater. Sci. Eng. A 209, 180 (1996).CrossRefGoogle Scholar
  12. 12.
    S. Wongsisa, P. Srichandr, and N. Poolthong, Mater. Trans. 56, 70 (2015).CrossRefGoogle Scholar
  13. 13.
    G. G. Lee and G. H. Ha, J. Korean Powder Metall. Inst. 12, 112 (2005).CrossRefGoogle Scholar
  14. 14.
    R. Joost, J. Pirso, M. Viljus, S. Letunovits, and K. Juhani, Estonian J. Eng. 18, 127 (2012).CrossRefGoogle Scholar
  15. 15.
    W. G. Jung, J. Ind. Eng. Chem. 20, 2384 (2014).CrossRefGoogle Scholar
  16. 16.
    K. J. A. Brookes, World Directory and Handbook of Hardmetals and Hard Materials, Sixth ed., pp.95–102, International Carbide Data, Hertfordshire (1996).Google Scholar
  17. 17.
    H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A 21A, 1990 (1990).Google Scholar
  18. 18.
    M. A. Xueming and J. I. Gang, J. Alloy. Compd. 245, L30 (1996).CrossRefGoogle Scholar
  19. 19.
    M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, Int. J. Refrac. Met. Hard Mater. 27, 159 (2009).CrossRefGoogle Scholar
  20. 20.
    L. L. Shaw, Adv. Eng. Mater. 2, 721 (2000).CrossRefGoogle Scholar
  21. 21.
    W. Liu, X. Song, J. Zhang, G. Zhang, and X. Liu, Int. J. Refrac. Met. Hard Mater. 27, 115 (2009).CrossRefGoogle Scholar
  22. 22.
    Z. G. Ban and L. L. Shaw, J. Mater. Sci. 37, 3397 (2002).CrossRefGoogle Scholar
  23. 23.
    Y. Zhang and L. L. Shaw, J. Mater. Sci. 46, 6323 (2011).CrossRefGoogle Scholar
  24. 24.
    G. G. Lee, G. H. Ha, and B. K. Kim, J. Kor. Inst. Metal. & Mater. 37, 1233 (1999).Google Scholar
  25. 25.
    Z. Zhang, S. Wahlberg, M. Wang, and M. Muhammed, Nanostruct. Mater. 12, 163 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Ryu, H. Y. Sohn, G. Han, Y. Kim, K. S. Hwang, M. Mena, and Z. Z. Fang, Metall. Mater. Trans. B 39, 1 (2008).CrossRefGoogle Scholar
  27. 27.
    J. Hojo, T. Oku, and A. Kato, J. Less-Common Metal 59, 85 (1978).CrossRefGoogle Scholar
  28. 28.
    B. D. Cullity, Elements of X-ray Diffraction, Second ed., pp.81–145, Addison-Wesley Publishing Company Inc., London (1978).Google Scholar
  29. 29.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  30. 30.
    K. Venkateswarlu, A. C. Bose, and N. Rameshbabu, Physica B 405, 4256 (2010).CrossRefGoogle Scholar
  31. 31.
    ASM International Committee, ASM Handbook Vol. 7 Powder Metal Technologies and Application, pp.53–66, ASM International, New York (1998).Google Scholar
  32. 32.
    J. Schilz, Mater. Trans. JIM 39, 1152 (1998).CrossRefGoogle Scholar
  33. 33.
    N. Burgio, A. Iasonna, M. Magini, S. Martelli, and F. Padella, Il Nuovo Cimento 13, 459 (1991).CrossRefGoogle Scholar
  34. 34.
    H. K. Khoa, S. W. Bae, S. W. Bae, B. W. Kim, and J. S. Kim, J. Korean. Powder. Metall. Inst. 21, 155 (2014).CrossRefGoogle Scholar
  35. 35.
    R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, Fourth ed., pp.348–407, Cengage Learning, New York (2010).Google Scholar
  36. 36.
    Z. Sadighi, A. Ataie, and M. R. Barati, Met. Mater. Int. 20, 77 (2014).CrossRefGoogle Scholar
  37. 37.
    S. M. Kwon, N. R. Park, J. W. Shin, S. H. Oh, B. S. Kim, and I. J. Shon, Korean J. Met. Mater. 53, 555 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Materials System Engineering, College of EngineeringPukyong National UniversityBusanKorea
  2. 2.Powder Technology DepartmentKorea Institute of Materials ScienceGyeongnamKorea

Personalised recommendations