Advertisement

Metals and Materials International

, Volume 22, Issue 1, pp 26–33 | Cite as

Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

  • Min-Suk OhEmail author
  • Sang-Heon Kim
  • Jong-Sang Kim
  • Jae-Won Lee
  • Je-Ha Shon
  • Young-Sool Jin
Article

Abstract

The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

Keywords

Zn-Mg-Al alloy-coated steel sheet microstructure corrosion galvanization coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Marder, Prog. Mater. Sci. 45, 191 (2000).CrossRefGoogle Scholar
  2. 2.
    Q. Qu, C. Yan, Y. Wan, and C. Cao, Corros. Sci. 44, 2789 (2002).CrossRefGoogle Scholar
  3. 3.
    Y. Wang and J. Zeng, Surf. Coat. Technol. 245, 55 (2014).CrossRefGoogle Scholar
  4. 4.
    J. D. Culcasi, P. R. Sere, C. I. Elsner, and A. R. Disarli, Surf. Coat. Technol. 122, 21 (1999).CrossRefGoogle Scholar
  5. 5.
    S. Chang and J. C. Shin, Corros. Sci. 36, 1425 (1994).CrossRefGoogle Scholar
  6. 6.
    S. M. A. Shibli and R. Manu, Surf. Coat. Technol. 201, 2358 (2006).CrossRefGoogle Scholar
  7. 7.
    R. J. Tzou and H. C. Shih, Surf. Coat. Technol. 34, 231 (1988).CrossRefGoogle Scholar
  8. 8.
    M. Dutta, A. K. Halder, and S. B. Singh, Surf. Coat. Technol. 205, 2578 (2010).CrossRefGoogle Scholar
  9. 9.
    R. P. Edavan and R. Kopinski, Corros. Sci. 51, 2429 (2009).CrossRefGoogle Scholar
  10. 10.
    T. Prosek, N. Larche, M. Vlot, F. Goodwin, and D. Thierry, Mater. Corros. 61, 412 (2010).Google Scholar
  11. 11.
    T. Prosek, A. Nazarov, U. Bexwell, D. Thierry, and J. Serak, Corros. Sci. 50, 2216 (2008).CrossRefGoogle Scholar
  12. 12.
    D. Persson, D. Thierry, N. LeBozec, and T. Prosek, Corros. Sci. 72, 54 (2013).CrossRefGoogle Scholar
  13. 13.
    J. M. Byun, J. M. Yu, D. K. Kim, T.Y. Kim, W. S. Jung, and Y. D. Kim, Korean J. Met. Mater. 51, 413 (2013).CrossRefGoogle Scholar
  14. 14.
    N. C. Hosking, M. A. Strom, P. H. Shipway, and C. D. Rudd, Corros. Sci. 49, 3669 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Volovitch, C. Allely, and K. Ogle, Corros. Sci. 51, 1251 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Y. Lee, Y. S. Yun, W. T. Kim, and D. H. Kim, Met. Mater. Int. 20, 885 (2014).CrossRefGoogle Scholar
  17. 17.
    J. H. Cho, H. W. Kim, C. Y. Lim, and S. B. Kang, Met. Mater. Int. 20, 647 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Sullivan, S. Mehraban, and J. Elvins, Corros. Sci. 53, 2208 (2011).CrossRefGoogle Scholar
  19. 19.
    G. Angeli, R. Brisberger, M. Bulter, L. Diea, C. Filthaut, W. Fischer, T. Koll, T. Maiwald, C. Pesci, A. Richter, J. Schulz, U. Stellmacher, and N. Landschoot, Galvatech, 13, 632 (2013).Google Scholar
  20. 20.
    Factsage Thermochemical Databases, Zn-Al Binary Phase Diagram, http://www.factsage.cn/fact/documentation/binary/Al-Zn (accessed April 15, 2015).Google Scholar
  21. 21.
    T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corros. Sci. 50, 2216 (2008).CrossRefGoogle Scholar
  22. 22.
    K. Ueda, A. Takahashi, and Y. Kubo, La Metallurgia Italianan. 2, 13 (2012).Google Scholar
  23. 23.
    F. Thebault, B. Vuillemin, R. Oltra, K. Ogle, and C. Allely, Electrochem. Acta. 53, 5226 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Min-Suk Oh
    • 1
    Email author
  • Sang-Heon Kim
    • 1
  • Jong-Sang Kim
    • 1
  • Jae-Won Lee
    • 2
  • Je-Ha Shon
    • 2
  • Young-Sool Jin
    • 3
  1. 1.POSCO Technical Research LaboratoriesJeonnamSouth Korea
  2. 2.POMIA (Pohang Institute of Metal Industry Advancement)PohangSouth Korea
  3. 3.GIFT, Pohang University of Science and Technology (POSTECH)PohangSouthKorea

Personalised recommendations