Advertisement

Metals and Materials International

, Volume 21, Issue 5, pp 874–890 | Cite as

Inverse characterization method for mechanical properties of strain/strain-rate/temperature/temperature-history dependent steel sheets and its application for hot press forming

  • Hyunki Kim
  • Dongun Kim
  • Kanghwan Ahn
  • Donghoon Yoo
  • Hyun-Sung Son
  • Gyo-Sung Kim
  • Kwansoo ChungEmail author
Article

Abstract

In order to measure the flow curves of steel sheets at high temperatures, which are dependent on strain and strain rate as well as temperature and temperature history, a tensile test machine and specimens were newly developed in this work. Besides, an indirect method to characterize mechanical properties at high temperatures was developed by combining experiments and its numerical analysis, in which temperature history were also accounted for. Ultimately, a modified Johnson-Cook type hardening law, accounting for the dependence of hardening behavior with deterioration on strain rate as well as temperature, was successfully developed covering both pre- and post-ultimate tensile strength ranges for a hot press forming steel sheet. The calibrated hardening law obtained based on the inverse characterization method was then applied and validated for hot press forming of a 2-D mini-bumper as for distributions of temperature history, thickness and hardness considering the continuous cooling transformation diagram. The results showed reasonably good agreement with experiments

Keywords

metals mechanical properties inverse characterization method thermal analysis hot press forming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Norrbottens Järnverk, Patent GB1490535, Sweden (1977).Google Scholar
  2. 2.
    D. W. Fan, H. S. Kim, S. Birosca, and B. C. De Cooman, Mater. Sci. Tech. Ser. 2007, 99 (2007).Google Scholar
  3. 3.
    C. A. Hernandez, S. F. Medina, and J. Ruiz, Acta Mater. 44, 155 (1996).CrossRefGoogle Scholar
  4. 4.
    D. L. Baragar, J. Mech. Work. Technol. 14, 295 (1987).CrossRefGoogle Scholar
  5. 5.
    A. S. Khan and R. Q. Liang, Int. J. Plasticity 15, 1089 (1999).CrossRefGoogle Scholar
  6. 6.
    R. Q. Liang and A. S. Khan, Int. J. Plasticity 15, 963 (1999).CrossRefGoogle Scholar
  7. 7.
    Y. C. Lin, M. S. Chen, and J. Zhong, Comp. Mater. Sci 42, 470 (2008).CrossRefGoogle Scholar
  8. 8.
    K. P. Rao, Y. K. D. V. Prasad, and E. B. Hawbolt, J. Mater. Process. Tech. 56, 908 (1996).CrossRefGoogle Scholar
  9. 9.
    Z. D. Liu, S. L. Bai, K. Yang, and M. B. Han, Int. J. Plasticity 17, 691 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Eriksson, M. Oldenburg, M. C. Somani, and L. P. Karjalainen, Model. Simul. Mater. Sc. 10, 277 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Majta and A. K. Zurek, Int. J. Plasticity 19, 707 (2003).CrossRefGoogle Scholar
  12. 12.
    J. Qu, Q. L. Jin, and B. Y. Xu, Int. J. Plasticity 21, 1267 (2005).CrossRefGoogle Scholar
  13. 13.
    R. P. Garrett, J. Lin, and T. A. Dean, Int. J. Plasticity 21, 1640 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Merklein and J. Lechler, J. Mater. Process. Tech. 177, 452 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Turetta, S. Bruschi, and A. Ghiotti, J. Mater. Process. Tech. 177, 396-400 (2006).CrossRefGoogle Scholar
  16. 16.
    M. G. Lee, S. J. Kim, H. N. Han, and W. C. Jeong, Int. J. Mech. Sci. 51, 888 (2009).CrossRefGoogle Scholar
  17. 17.
    Z. W. Xing, J. Bao, and Y. Y. Yang, Mat. Sci. Eng. A-Struct. 499, 28 (2009).CrossRefGoogle Scholar
  18. 18.
    H. H. Bok, M. G. Lee, H. D. Kim, and M. B. Moon, Met. Mater. Int. 16, 185 (2010).CrossRefGoogle Scholar
  19. 19.
    G. R. Johnson and W. H. Cook, Proc. 7th International Symposium on Ballistics, pp.541–547, Hague, Netherlands (1983).Google Scholar
  20. 20.
    G. R. Johnson and W. H. Cook, Eng. Fract. Mech. 21, 31 (1985).CrossRefGoogle Scholar
  21. 21.
    G. R. Johnson, J. M. Hoegfeldt, U. S. Lindholm, and A. Nagy, J. Eng. Mater-T Asme. 105, 42 (1983).CrossRefGoogle Scholar
  22. 22.
    F. Gao, Z. Y. Liu, R. D. K. Misra, H. T. Liu, and F. X. Yu, Met. Mater. Int. 20, 939 (2014).CrossRefGoogle Scholar
  23. 23.
    S. B. Jeon, J. S. Kim, K. Kim, K. S. Son, and D. Kim, Korean J. Met. Mater. 52, 11 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Z. Tali, M. Mazinani, M. R. G. Ferdowsi, G. R. Ebrahimi, and M. Marvi-Mashhadi, Met. Mater. Int. 20, 1073 (2014).CrossRefGoogle Scholar
  25. 25.
    W. Tong, H. Tao, X. Q. Jiang, N. A. Zhang, M. P. Marya, L. G. Hector, and X. H. Q. Gayden, Metall. Mater. Trans. A 36A, 2651 (2005).CrossRefGoogle Scholar
  26. 26.
    K. H. Chung, W. Lee, J. H. Kim, C. Kim, S. H. Park, D. Kwon, and K. Chung, Int. J. Solids Struct. 46, 344 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Dunand and D. Mohr, Int. J. Solids. Struct. 47, 1130 (2010).CrossRefGoogle Scholar
  28. 28.
    K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim, Int. J. Plasticity 27, 1485 (2011).CrossRefGoogle Scholar
  29. 29.
    D. Y. Seok, D. Kim, S. W. Kim, J. Bak, Y. S. Lee, and K. Chung, Met. Mater. Int. 21, 54 (2015).CrossRefGoogle Scholar
  30. 30.
    W. Noh, Y. Koh, D.-Y. Seok, R. H. Wagoner, F. Barlat, and K. Chung, Int. J. Mater. Form. (Online Publish 2014).Google Scholar
  31. 31.
    H. W. Swift, J. Mech. Phys. Solids 1, 1 (1952).CrossRefGoogle Scholar
  32. 32.
    A. Considère, Ann. des Ponts & Chaussées 9, 575 (1885).Google Scholar
  33. 33.
    A. S. Khan, Y. S. Suh, and R. Kazmi, Int. J. Plasticity 20, 2233 (2004).CrossRefGoogle Scholar
  34. 34.
    B. Farrokh and A. S. Khan, Int. J. Plasticity 25, 715 (2009).CrossRefGoogle Scholar
  35. 35.
    A. S. Khan, R. Kazmi, B. Farrokh, and M. Zupan, Int. J. Plasticity 23, 1105 (2007).CrossRefGoogle Scholar
  36. 36.
    Spencer, A. J. M., Continuum Mechanics, pp.100–101, Dover Publication Inc., New York (2004).Google Scholar
  37. 37.
    H. G. Kim, H. S. Son, S. Y. Kang, and S. H. Park, IDDRG 2006 Conference, pp.349–356, University of Porto, Portugal (2006).Google Scholar
  38. 38.
    G. E. Totten, Steel Heat Treatment Handbook, 2nd Ed., p.567, CRC Press, USA (2007).Google Scholar
  39. 39.
    H.-S. Son, 6th Sheet Metal Forming Symposium, pp.27–38, South Korea (2009).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hyunki Kim
    • 1
  • Dongun Kim
    • 2
  • Kanghwan Ahn
    • 2
  • Donghoon Yoo
    • 1
  • Hyun-Sung Son
    • 2
  • Gyo-Sung Kim
    • 2
  • Kwansoo Chung
    • 1
    Email author
  1. 1.Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research InstituteSeoul National UniversitySeoulRepublic of Korea
  2. 2.POSCO Technical Research LaboratoriesJeonnamRepublic of Korea

Personalised recommendations