Metals and Materials International

, Volume 21, Issue 5, pp 785–792 | Cite as

Stress corrosion cracking behavior of X80 steel in artificial seawater under controlled strain rate and applied potentials

  • Daeho Jeong
  • Woojin Jung
  • Youngju Kim
  • Masahiro Goto
  • Sangshik Kim


The effect of applied potential on the stress corrosion cracking (SCC) behavior of X80 steel was examined in artificial seawater (ASW) at different strain rates of 1×10−4, 1×10−5 and 1×10−6/sec. The controlled potential of −650, −850, −950 and −1,050 mVSCE, respectively, was applied during strainig. It was found that X80 steel was susceptible to SCC in seawater environment under both anodic and cathodic applied potentials and the susceptibility was sensitive to strain rate. The SCC was initiated at the surface pits under an anodic applied potential of -650 mVSCE. The effect of cathodic applied potential on the SCC behavior of X80 steel in ASW was more complex, such that the combined effect of surface damage, including pits and hydrogeninduced cracking, and hydrogen concentration generated on the surface tended to determine the SCC susceptibility. The SCC behavior of X80 steel with different applied potentials in ASW was discussed based on the microstructural and the fractographic observations.


alloys thermomechanical processing corrosion scanning electron microscopy (SEM) X80 steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A 502, 38 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Y. Shin, S. M. Hong, J. H. Bae, K. S. Kim, and S. H. Lee, Met. Mater. Int. 47, 155 (2009).Google Scholar
  3. 3.
    Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang, Corros. Sci. 53, 2761 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. J. Kim, J. K. Kwon, D. H. Jeong, Y. S. Yoon, N. S. Woo, M. Goto, and S. S. Kim, Met. Mater. Int. 20, 851 (2014).CrossRefGoogle Scholar
  5. 5.
    J. K. Kwon, D. H. Ahn, D. H. Jeong, Y. J. Kim, N. S. Woo, and S. S. Kim, Korean J. Met. Mater. 52, 757 (2014).Google Scholar
  6. 6.
    D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Mater. Trans. A 45A, 654 (2014).CrossRefGoogle Scholar
  7. 7.
    B. T. Lu and J. L. Luo, Corrosion 62, 129 (2006).CrossRefGoogle Scholar
  8. 8.
    M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover, Corrosion 23, 142 (1967).CrossRefGoogle Scholar
  9. 9.
    C. F. Barth and A. R. Troiano, Corrosion 28, 259 (1972).CrossRefGoogle Scholar
  10. 10.
    D. P. Baxter, S. J. Maddox, and R. J. Pargeter, 26th Int. Conf. on Offshore Mech. & Arctic Eng., p.117, ASME, San Diego, USA (2007).Google Scholar
  11. 11.
    NORSOK and Materials Selection, NORSOK Standard M-503, Rev. 2, Norway (1997).Google Scholar
  12. 12.
    C. Lindley and W. J. Rudd, Mar. Struct. 14, 397 (2001).CrossRefGoogle Scholar
  13. 13.
    J. Billingham, J. V. Sharp, J. Spurrier, and P. J. Kilgallon, Research Report 105, Review of the Performance of High Strength Steels Used Offshore, Health and Safety Executive (HAE) Books, Cranfield (2003).Google Scholar
  14. 14.
    H. Arup, Corros. Eng. Sci. Tech. 26, 169 (1991).Google Scholar
  15. 15.
    R. J. Gest and A. R. Troiano, Corrosion 30, 274 (1974).CrossRefGoogle Scholar
  16. 16.
    M. Bobby Kannana, W. Dietzelb, R. K. Singh Ramana, and P. Lyond Scripta, Materialia 57, 579 (2007).Google Scholar
  17. 17.
    G. M. Pressouyre and I. M. Bernstein, Acta Metallurgica 27, 89 (1979).CrossRefGoogle Scholar
  18. 18.
    D. J. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 7 (2015).CrossRefGoogle Scholar
  19. 19.
    B. Gu, J. Luo, and X. Mao, Corrosion 55, 96 (1999).CrossRefGoogle Scholar
  20. 20.
    L. J. Qiao and J. L. Luo, Corrosion 54, 281 (1998).CrossRefGoogle Scholar
  21. 21.
    M. C. Li and Y. F. Cheng, Electrochim. Acta 52, 8111 (2007).CrossRefGoogle Scholar
  22. 22.
    Q. Lijie, C. Wuyang, M. Huijun, X. Jimei, and G. Peixin, Metall. Mate. Trans. A 24, 959 (1993).CrossRefGoogle Scholar
  23. 23.
    STM Standard D1141, Standard Specification for Substitute Ocean Water, Annual book of ASTM Standards, 11.02. (1990).Google Scholar
  24. 24.
    ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, Annual book of ASTM Standards, 03.02. (2000).Google Scholar
  25. 25.
    Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 88, 337 (2014).CrossRefGoogle Scholar
  27. 27.
    H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2011).CrossRefGoogle Scholar
  28. 28.
    K. G. Hoge and A. K. Mukherjee J. Mater. Sci. 12, 1666 (1977).CrossRefGoogle Scholar
  29. 29.
    M. Takano, Corrosion 30, 441 (1974).CrossRefGoogle Scholar
  30. 30.
    Z. Y. Liua, X. G. Lia, C. W. Dua, and Y. F. Cheng, Corros. Sci. 51, 2863 (2009).CrossRefGoogle Scholar
  31. 31.
    R. M. Rieck, A. Atrens, and I. O. Smith, Metall. Mater. Trans. A 20, 889 (1989).CrossRefGoogle Scholar
  32. 32.
    G. M. Scamans, R. Alani, and P. R. Swann, Corros. Sci. 16, 443 (1976).CrossRefGoogle Scholar
  33. 33.
    D. Hardie, N. J. H. Holroyd, and R. N. Parkins, Metal Sci. 13, 603 (1979).CrossRefGoogle Scholar
  34. 34.
    S. P. Lynch, J. Mater. Sci. 20, 3329 (1985).CrossRefGoogle Scholar
  35. 35.
    W. Tian, S. Lim N. D, S. Chen, and Q. Wu, Corros. Sci. 93, 242 (2015).CrossRefGoogle Scholar
  36. 36.
    P. Pedeferrim, Constr. Build. Mater. 10, 391 (1996).CrossRefGoogle Scholar
  37. 37.
    M. Kermani and J. C. Scully, Corros. Sci. 19, 89 (1979).CrossRefGoogle Scholar
  38. 38.
    R. N. Parkins and J. A. Beavers, Corrosion 59, 258 (2003)CrossRefGoogle Scholar
  39. 39.
    S. A. Serebrinsky, G. S. Duffo, and J. R. Galvele, Corros. Sci. 41, 191 (1999).CrossRefGoogle Scholar
  40. 40.
    R. N. Parkins, Corrosion 46, 178 (1990).CrossRefGoogle Scholar
  41. 41.
    L. Fournier, D. Delafosse, and T. Magnin, Mater. Sci. Eng. A 269, 111 (1999).CrossRefGoogle Scholar
  42. 42.
    D. Delafosse and T. Magnin, Eng. Fract. Mech. 68, 693 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Daeho Jeong
    • 1
  • Woojin Jung
    • 1
  • Youngju Kim
    • 2
  • Masahiro Goto
    • 3
  • Sangshik Kim
    • 1
  1. 1.Department of Mat. Sci. and Eng., ReCAPTGyeongsang National UniversityChinjuKorea
  2. 2.Mineral Resources Research DivisionKIGAMDaejeonKorea
  3. 3.Department of Mechanical EngineeringOita UniversityTokyoJapan

Personalised recommendations