Metals and Materials International

, Volume 21, Issue 5, pp 805–814 | Cite as

Effect of rolling asymmetry on selected properties of grade 2 titanium sheet

  • M. Wroński
  • K. Wierzbanowski
  • M. Wróbel
  • S. Wroński
  • B. Bacroix


Asymmetric rolling can be used in order to modify material properties and to reduce forces and torques applied during deformation. This geometry of deformation is relatively easy to implement on existing industrial rolling mills and it can provide large volumes of a material. The study of microstructure, crystallographic texture and residual stress in asymmetrically rolled titanium (grade 2) is presented in this work. The above characteristics were examined using the EBSD technique and X-ray diffraction. The rolling asymmetry was realized using two identical rolls, driven by independent motors, rotating with different angular velocities. It was found that asymmetric rolling leads to microstructure modification and refinement. At low deformations one observes a process of grain size decrease caused by the asymmetry of rolling process. In contrast, at the medium range of deformations the microstructure refinement consists mainly in subgrain formation and grain fragmentation. Another observation is that for low to intermediate rolling reductions (≤40%) the predominant mechanisms are slip and twinning, while for higher deformation (>40%) the main mechanism is slip. It was found that grain refinement effect, caused by the rolling asymmetry, persists also after recrystallization annealing. And finally, texture homogenization and reduction of residual stress were confirmed for asymmetrically rolled samples.


metals asymmetric rolling electron backscattering diffraction (EBSD) twinning texture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gao and G. Chen, Iron and Steel, 33, 63 (1998).Google Scholar
  2. 2.
    S. H. Lee and G. N, Lee, Int. J. Mech. Sci. 43, 1997 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Chhann, D. Solas, A. L. Etter, R. Penelle, and T. Baudin, Mater. Sci. Forum 550, 551(2007).CrossRefGoogle Scholar
  4. 4.
    S. Wronski, B. Ghilianu, T. Chauveau, and B. Bacroix, Mater. Charact. 62, 22 (2011).CrossRefGoogle Scholar
  5. 5.
    F. Zhang, G. Vincent, Y. H. Sha, L. Zuo, J. J. Fundenberger, and C. Esling, Scripta Mater. 50, 1011 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Wronski, K. Wierzbanowski, B. Bacroix, T. Chauveau, and M. Wróbel, J. Cent. South Univ. T. 20, 1443 (2013).CrossRefGoogle Scholar
  7. 7.
    F. J. Simões, R. J. Alves de Sousa, J. A. Grácio, F. Barlat, and J. W. Yoon, Int. J. Mech. Sci. 50, 1372 (2008).CrossRefGoogle Scholar
  8. 8.
    J.-H. Cho, S. S. Jeong, H.-W. Kim, and S.-B. Kang, Mat. Sci. Eng. A 566, 40 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Mat. Sci. Eng. A 488, 214 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Li, L. Fu, B. Fu, and A. Shan, Mat. Sci. Eng. A, 558, 309 (2012).CrossRefGoogle Scholar
  11. 11.
    Orientation Imaging MicroscopyTM (OIM) Analysis 5.3 Software User Manual, EDAX/TSL, Utah, USA (2008).Google Scholar
  12. 12.
    H. Bunge, Texture Analysis in Material Science, pp.3–41, Butterworths, London (1982).CrossRefGoogle Scholar
  13. 13.
    I. C. Noyan and J. B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation, pp.17–163, Springer Verlag, New York (1987).CrossRefGoogle Scholar
  14. 14.
    U. Wenzel, J. Ligot, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, J. Appl. Crystallogr. 38, 1 (2005).CrossRefGoogle Scholar
  15. 15.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  16. 16.
    K. Ahn, H. Huh, and J. Yoon, Met. Mater. Int. 19, 749 (2013).CrossRefGoogle Scholar
  17. 17.
    Z. Li, L. Fu, B. Fu, and A. Shan, Mater. Sci. Eng. A 558, 309 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Bozzolo, L. Chan, and A. R. Rollet, J. Appl. Crystallogr. 43, 596 (2010).CrossRefGoogle Scholar
  19. 19.
    B. Bacroix, J. Tarasiuk, K. Wierzbanowski, and K. Zhu, J. Appl. Crystallogr. 43, 134 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Pamda, S. K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S. C. Mishra, and S. Suwas, Mater. Charact. 98, 93 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, Mat. Sci. Eng. A 398, 209 (2005).CrossRefGoogle Scholar
  22. 22.
    S. V. Zherebstov, G. D. Dyakonov, A. A. Salem, S. P. Malysheva, G. A. Salishchev, and S. L. Semiatin, Mat. Sci. Eng. A 528, 3474 (2011).CrossRefGoogle Scholar
  23. 23.
    T. Ungar, M. G. Glavicic, L. Balogh, K. Nyilas, A. A. Salem, G. Ribarik, and S.L. Semiatin, Mat. Sci. Eng. A 493, 79 (2008).CrossRefGoogle Scholar
  24. 24.
    Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, Mat. Sci. Eng. A 398, 209 (2005).CrossRefGoogle Scholar
  25. 25.
    S. Wronski, K. Wierzbanowski, B. Bacroix, M. Wróbel, E. Rauch, F. Montheillet, and M. Wronski, Arch. Metall. Mater. 54, 89 (2009).Google Scholar
  26. 26.
    M. Wronski, K. Wierzbanowski, L. Pytlik, B. Bacroix, and P. Lipinski, Mater. Sci. Forum, 777, 65 (2014).CrossRefGoogle Scholar
  27. 27.
    S. Wronski, K. Wierzbanowski, B. Bacroix, M. Wróbel, T. Chauveau, and M. Wronski, Mater. Sci. Forum, 638-642, 2811 (2010).CrossRefGoogle Scholar
  28. 28.
    J. Tarasiuk, K. Wierzbanowski, and A. Baczmański, Cryst. Res. Technol. 33, 101 (1998).CrossRefGoogle Scholar
  29. 29.
    M. Wronski, K. Wierzbanowski, S. Wronski, B. Bacroix, and P. Lipinski, Int. J. Mech. Sci. 87, 258 (2014).CrossRefGoogle Scholar
  30. 30.
    K. Wierzbanowski, A. Baczmanski, P. Lipinski, and A. Lodini, Arch. Metall. Mater. 52, 77 (2007).Google Scholar
  31. 31.
    A. Baczmański, K. Wierzbanowski, and J. Tarasiuk, Z. Metallkd. 86, 507 (1995).Google Scholar
  32. 32.
    A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, and A. Lodini, Rev. Metall-Paris, 94, 1467 (1997).Google Scholar
  33. 33.
    A. Baczmański, A. Tidu, P. Lipinski, M. Humbert, and K. Wierzbanowski, Mater. Sci. Forum, 524-525, 235 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Wroński
    • 1
    • 3
  • K. Wierzbanowski
    • 1
  • M. Wróbel
    • 2
  • S. Wroński
    • 1
  • B. Bacroix
    • 3
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakówPoland
  3. 3.LSPM-CNRSUniversité Paris XIII, Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations