Advertisement

Metals and Materials International

, Volume 21, Issue 5, pp 832–841 | Cite as

Hot tensile deformation behavior of twin roll casted 7075 aluminum alloy

  • Lei Wang
  • Huashun Yu
  • Yunsoo Lee
  • Hyoung-Wook KimEmail author
Article

Abstract

High temperature deformation behavior of the 7075 aluminum alloy sheets fabricated by twin roll casting and rolling was investigated by hot tensile tests at different temperatures from 350 to 500 °C and various initial strain rates from 1×10−3 to 1×10−2 s−1. The results show that flow stress increased with increasing initial strain rate and decreasing deformation temperature. A large elongation of 200% was obtained at relatively high strain rate of 5×10−3 s−1 at 450 °C. It is closely related with the grain boundary sliding at elevated temperature attributed to the recrystallized fine grains and the large volume fraction of high-angle grain boundaries. The fracture transformation mechanism changes from ductile transgranular fracture to ductile intergranular fracture due to the recrystallized fine grains at high temperature. High density and uniform cavities observed in large elongation samples at high temperature reveals the contribution of grain boundary sliding. Necking-controlled failure mode was characterized by rare cavities with low elongation.

Keywords

alloys twin roll casting recrystallization tensile test elongation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Chen, Z. Y. Liu, P. Xia, A. L. Ning, and S. M. Zeng, Met. Mater. Int. 19, 197 (2013).CrossRefGoogle Scholar
  2. 2.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller, Mater. Sci. Eng. A 280, 102 (2000).CrossRefGoogle Scholar
  3. 3.
    J. C. Williams and E. A. Starke Jr., Acta Mater. 51, 5775 (2003).CrossRefGoogle Scholar
  4. 4.
    N. P. Jin, H. Zhang, Y. Han, W. X. Wu, and J. H. Chen, Mater. Charact. 60, 530 (2009).CrossRefGoogle Scholar
  5. 5.
    J.-H. Cho, H.-W. Kim, C.-Y. Lim, and S.-B. Kang, Met. Mater. Int. 20, 647 (2014).CrossRefGoogle Scholar
  6. 6.
    Y.-S. Kim, H.-W. Kwon, J.-W. Park, and D.-J. Kim, Korean J. Met. Mater. 51, 291 (2013).Google Scholar
  7. 7.
    M. Yun, S. Lokyer, and J. D. Hunt, Mater. Sci. Eng. A 280, 116 (2000).CrossRefGoogle Scholar
  8. 8.
    Y. S. Lee, W. K. Kim, D. A Jo, C. Y Lim, and H. W. Kim, Trans. Nonferrous Met. Soc. China 24, 2226 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, N. P. Jin, and J. H. Chen, Trans. Nonferrous Met. Soc. China 21, 437 (2011).CrossRefGoogle Scholar
  10. 10.
    E. Cerri, E. Evangelista, A. Forcellese, and H. J. McQueen, Mater. Sci. Eng. A 197, 181 (1995).CrossRefGoogle Scholar
  11. 11.
    P. Malek. Mater. Sci. Eng. A 137, 21 (1991).CrossRefGoogle Scholar
  12. 12.
    D. H. Shin, C. S. Lee, and W. J. Kim, Acta Mater. 45, 5195 (1997).CrossRefGoogle Scholar
  13. 13.
    M. S. Turhal and T. Savaskan. J. Mater. Sci. 38, 2639 (2003).CrossRefGoogle Scholar
  14. 14.
    K.-S. Kim, S.-Y. Sung, B.-S. Han, C.-Y. Jung, and K.-A. Lee, Met. Mater. Int. 20, 243 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Banerjeea, P. S. Robi, A. Srinivasan, and L. P. Kumar, Mater. Sci. Eng. A 527, 2498 (2010).CrossRefGoogle Scholar
  16. 16.
    W. J. Liang, Q. L. Pan, Y. B. He, Y. C. Li, and X. G. Zhang, J. Cent. South Univ. Technol. 15, 289 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Yu, H. S. Yu, G. H. Min, S. S. Park, B. S. You, and Y. M. Kim. Met. Mater. Int. 19, 651 (2013).CrossRefGoogle Scholar
  18. 18.
    R. W. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials, fourth ed., p.33, J. Wiley & Sons, Inc. (1996).Google Scholar
  19. 19.
    S. Spigarelli, M. Cabibbo, and E. Evangelista, J. Bidulska, J. Mater. Sci. 38, 81 (2003).CrossRefGoogle Scholar
  20. 20.
    F. Bardi, M. Cabibbo, E. Evangelista, S. Spigarelli, and M. Vukcevic, Mater. Sci. Eng. A 339, 43 (2003).CrossRefGoogle Scholar
  21. 21.
    E. Cerri, P. Leo, and P. P. De Marco, J. Mater. Process. Technol. 189, 97 (2007).CrossRefGoogle Scholar
  22. 22.
    M. R. Rokni and A. Zarei-Hanzaki, Mater. Des. 32, 4955 (2011).CrossRefGoogle Scholar
  23. 23.
    H. E. Hu, L. Zhen, L. Yang, W. Z. Shao, and B. Y. Zhang, Mater. Sci. Eng. A 488, 64 (2008).CrossRefGoogle Scholar
  24. 24.
    T. Sheppard and A. Jackson, Mater. Sci. Technol. 13, 203 (1997).CrossRefGoogle Scholar
  25. 25.
    X. Huang, H. Zhang, Y. Han, and W. Wu, J. Chen. Mater. Sci. Eng. A 527, 485 (2010).CrossRefGoogle Scholar
  26. 26.
    W. D. Cao, X. P. Lu, and H. Conrad, Acta Mater. 44, 697 (1996).CrossRefGoogle Scholar
  27. 27.
    J. C. Tan and M. J. Tan, Mater. Sci. Eng. A 339, 81 (2003).CrossRefGoogle Scholar
  28. 28.
    J. S. Jin, X. Y. Wang, H. E. Hu, and J. C. Xia, Met. Mater. Int. 18, 69 (2012).CrossRefGoogle Scholar
  29. 29.
    C. M. Cepeda-Jiménez, O. A. Ruano, M. Carsí, and F. Carreno, Mater. Sci. Eng. A 552, 530 (2012).CrossRefGoogle Scholar
  30. 30.
    T. Watanabe, Mater. Sci. Forum 375, 233(1997).Google Scholar
  31. 31.
    T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, pp.260–276, Cambridge University Press, Cambridge (1997).CrossRefGoogle Scholar
  32. 32.
    O. D. Sherby and J. Wadsworth, Prog. Mater. Sci. 33, 166 (1989).CrossRefGoogle Scholar
  33. 33.
    X. Y. Liu, Q. L. Pan, Y. B. He, W. B. Li, W. J. Liang, and Z. M. Yin, Mater. Sci. Eng. A 500, 150 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lei Wang
    • 1
    • 2
  • Huashun Yu
    • 1
  • Yunsoo Lee
    • 2
  • Hyoung-Wook Kim
    • 2
    Email author
  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinanChina
  2. 2.Metallic Materials DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations