Advertisement

Metals and Materials International

, Volume 21, Issue 5, pp 857–864 | Cite as

Temperature dependence of initial passivity breakdown of AZ61 and AZ91D Mg alloys in 0.1 M NaCl solution

  • Yun-Il Choi
  • Kensuke Kuroda
  • Masazumi Okido
Article

Abstract

The effects of solution temperature on the initial corrosion characteristics of wrought AZ61 and die-cast AZ91D Mg alloys in 0.1M NaCl were analyzed. Systematic studies indicate that AZ91D exhibits higher corrosion resistance than AZ61 at room temperature. However, at high temperatures of around 55 °C, we observed contradictory corrosion behavior, as demonstrated by cyclic corrosion tests and electrochemical tests including potentiodynamic polarization, potentiostatic polarization, and elecrochemical impedance spectroscopy. As a result, AZ61 rather showed higher corrosion resistance from the point of view of pit initiation during the immersion at 55 °C resulting from the strengthening of surface passivation. These results can be attributed to the microstructure of AZ61 which contains sub-micron scale β-phase particles dispersed effectively within the α-Mg grains whereas AZ91D has many α-Mg that do not containing any β-phases.

Keywords

magnesium pitting corrosion passivity surface electrochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Cole, Eds. J. Quinn, E. Hetrick, and S. Bairley, Southfield, MI: USAMP (2006).Google Scholar
  2. 2.
    B. D. Lee, E. J. Kim, U. H. Baek, and J. W. Han, Met. Mater. Int. 19, 135 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. H. Kim and W. J. Kim, Met. Mater. Int. 21, 374 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Chen, J. Wang, E. H. Han, and W. Ke, Corros. Sci. 51, 477 (2009).CrossRefGoogle Scholar
  5. 5.
    L. Wang, T. Shinohara, and B. P. Zhang, Mater. Des. 33, 345 (2012).CrossRefGoogle Scholar
  6. 6.
    C. A. Walton, H. J. Martin, M. F. Horstemeyer, and P. T. Wang, Corros. Sci. 56, 194 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Song and S. Atrens, Adv. Eng. Mater. 1, 11 (1999).CrossRefGoogle Scholar
  8. 8.
    M. C. Merino, A. Pardo, R. Arrabal, S. Merino, P. Sasajus, and M. Mohedano, Corros. Sci. 52, 1696 (2010).CrossRefGoogle Scholar
  9. 9.
    Z. Wen, C. Wu, C. Dai, and F. Yang, J. Alloys Compd. 488, 392 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and S. Feliú, Electrochim. Acta 53, 7890 (2008).CrossRefGoogle Scholar
  11. 11.
    R. K. S. Raman, Metal. Mater. Trans. A 35, 2525 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Samaniego, I. Llorente, and S. Feliu, Corros. Sci. 68, 66 (2013).CrossRefGoogle Scholar
  13. 13.
    M. Jönsson and D. Persson, Corros. Sci. 52, 1077 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci. 50, 823 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Feliu Jr., C. Maffiotte, J. C. Galván, and V. Barranco, Corros. Sci. 53, 1865 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Song, A. Atrens, Z. Wu, and B. Zhang, Corros. Sci. 40, 1769 (1998).CrossRefGoogle Scholar
  17. 17.
    A. F. Froats, T. Kr. Aune, D. Hawke, W. Unsworth, J. Hillis, Metals Handbook, p.740, Vol.13, 9th ed., Corrosion ASM International, Materials Park, OH (1987).Google Scholar
  18. 18.
    R. P. Vera Cruz, A. Nishikata, and T. Tsuru, Corros. Sci. 40, 125 (1998).CrossRefGoogle Scholar
  19. 19.
    W. J. Beom, K. S. Yun, C. J. Park, H. J. Ryu, and Y. H. Kim, Corros. Sci. 52, 734 (2010).CrossRefGoogle Scholar
  20. 20.
    G. S. Frankel, J. Electrochem. Soc. 145, 2186 (1998).CrossRefGoogle Scholar
  21. 21.
    D. W. Buzza and R. C. Alkire, J. Electrochem. Soc. 142, 1104 (1995).CrossRefGoogle Scholar
  22. 22.
    A. Atrens and W. Dietzel, Adv. Eng. Mater. 9, 292 (2007).CrossRefGoogle Scholar
  23. 23.
    G. S. Frankel, A. Samaniego, and N. Birbilis, Corros. Sci. 70, 104 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Keddam, O. R. Mottos, and H. Takenouti, J. Electrochem. Soc. 128, 257 (1981).CrossRefGoogle Scholar
  25. 25.
    H. Schweikert, W. J. Lorenz, and H. Friedburg, J. Electrochem. Soc. 127, 1693 (1980).CrossRefGoogle Scholar
  26. 26.
    I. Apachitei, L. E. Fratila-Apachitei, and J. Duszczyk, Scripta Mater. 57, 1012 (2007).CrossRefGoogle Scholar
  27. 27.
    L. F. Lin, C. Y. Chao, and D. D. Macdonald, J. Electrochem. Soc. 128, 1194 (1981).CrossRefGoogle Scholar
  28. 28.
    T. Zhang, Y. Li, and F. Wang, Corros. Sci. 48, 1249 (2006).CrossRefGoogle Scholar
  29. 29.
    G. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Materials Technology Development Team, Corporate R&D InstituteDoosan Heavy Industries & ConstructionGyeongnamKorea
  2. 2.EcoTopia Science InstituteNagoya UniversityFuro-cho, Chikusa-ku, NagoyaJapan

Personalised recommendations