Advertisement

Metals and Materials International

, Volume 21, Issue 4, pp 734–740 | Cite as

Off-axis twist extrusion for uniform processing of round bars

  • Yan Beygelzimer
  • Roman Kulagin
  • Marat I. Latypov
  • Viktor Varyukhin
  • Hyoung Seop Kim
Article

Abstract

The present paper introduces a twist extrusion (TE) process capable of processing of round bars with uniform deformation and reports physical, analytical, and numerical modeling of the process. It is shown that the ability to treat round bars can be achieved by design of special off-axis TE dies in which the axis of the twist surface is displaced from the central axis of the bar being processed. Physical modeling conducted in the current study with plasticine demonstrates the feasibility of off-axis TE. A marker insert technique employed in the physical model reveals that tool-controlled flow (ideal helical flow) of the material is dominant in the process. Analytical model developed in the present study explains why using off-axis TE dies leads to uniform deformation and how this deformation uniformity depends on the die geometry. The main conclusions made upon analytical modeling are confirmed with complement finite element simulations. The simulations also show that the main deformation mode in off-axis TE is simple shear at the intersection planes between the twist and the straight channels of the die.

Keywords

severe plastic deformation cold working extrusion metals plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev, I. Sabirov, A. P. Zhilyaev, and T. G. Langdon, JOM 64, 1134 (2012).CrossRefGoogle Scholar
  2. 2.
    A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
  3. 3.
    V. M. Segal, Mater. Sci. Eng. A 386, 269 (2004).CrossRefGoogle Scholar
  4. 4.
    R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
  5. 5.
    G. A. Salishchev, O. R. Valiakhmetov, and R. M. Galeyev, J. Mater. Sci. 28, 2898 (1993).CrossRefGoogle Scholar
  6. 6.
    Y. Saito, H. Utsunomiya, and N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, Acta Mater. 49, 1497 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Beygelzimer, D. Orlov, and V. Varyukhin, Ultrafine Grained Materials II (eds. Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T.C. Lowe), p.297, The Minerals, Metals & Materials Society, Warrendale, PA (2002).Google Scholar
  9. 9.
    V. M. Segal, US patent, No. 709670, Howell, MI (2006).Google Scholar
  10. 10.
    S. Mizunuma, Mater. Sci. Forum 503–504, 185 (2006).CrossRefGoogle Scholar
  11. 11.
    Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Beygelzimer, Mater. Sci. Forum 683, 213 (2011).CrossRefGoogle Scholar
  13. 13.
    P. W. Bridgman, Studies in Large Plastic Flow and Fracture: with Special Emphasis on the Effects of Hydrostatic Pressure, pp.324–336, Harvard University Press, Cambridge (1964).CrossRefGoogle Scholar
  14. 14.
    V. M. Segal, Mater. Sci. Eng. A 338, 331 (2002).CrossRefGoogle Scholar
  15. 15.
    N. Pardis and R. Ebrahimi, Mater. Sci. Eng. A 527, 6153 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, and M. Kulakov, J. Mater. Process. Technol. 211, 522 (2011).CrossRefGoogle Scholar
  17. 17.
    C. Wang, F. Li, Q. Li, and L. Wang, Mater. Sci. Eng. A 548, 19 (2012).CrossRefGoogle Scholar
  18. 18.
    C. Wang, F. Li, Q. Li, J. Li, L. Wang, and J. Dong, Mater. Design 43, 492 (2013).CrossRefGoogle Scholar
  19. 19.
    U. MohammedIqbal and V. S. Senthilkumar, Int. J. Mech. Mater. Eng. 7, 24 (2012).Google Scholar
  20. 20.
    S. A. A. Akbari-Mousavi, and S. R. Bahadori, Mater. Sci. Eng. A 528, 1242 (2011).CrossRefGoogle Scholar
  21. 21.
    S. R. Bahadori and S. A. A. Akbari Mousavi, Mater. Sci. Eng. A 528, 6527 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Mater. Sci. Eng. A 503, 14 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Berta, D. Orlov, and P. B. Prangnell, Int. J. Mater. Res. 98, 200 (2007).CrossRefGoogle Scholar
  24. 24.
    S. Khoddam, A. Farhoumand, and P. D. Hodgson, Mater. Sci. Eng. A 528, 1023 (2011).CrossRefGoogle Scholar
  25. 25.
    M. I. Latypov, Y. Beygelzimer, and H. S. Kim, Mater. Trans. 54, 1587 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Beygelzimer, V. Varyukhin, D. Orlov, and S. Synkov, Twist Extrusion- a Process for Strain Accumulation, p.56, TEAN, Donetsk (2003).Google Scholar
  27. 27.
    G. I. Raab, Mater. Sci. Eng. A 410–411, 230 (2005).CrossRefGoogle Scholar
  28. 28.
    M. I. Latypov, M.-G. Lee, Y. Beygelzimer, and H. S. Kim, Met. Mater. Int. 21, 569 (2015).CrossRefGoogle Scholar
  29. 29.
    R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin, and Y. Beygelzimer, Metall. Mater. Trans. A 44, 3211 (2013).CrossRefGoogle Scholar
  30. 30.
    Y. Beygelzimer, A. Reshetov, O. Prokof’eva, and R. Kulagin, J. Mater. Process. Technol. 209, 3650 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yan Beygelzimer
    • 1
  • Roman Kulagin
    • 1
  • Marat I. Latypov
    • 2
  • Viktor Varyukhin
    • 1
  • Hyoung Seop Kim
    • 2
    • 3
  1. 1.Donetsk Institute for Physics and Engineering named after A.A. GalkinNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Center for Advanced Aerospace MaterialsPOSTECHPohangKorea
  3. 3.Department of Materials Science and EngineeringPOSTECHPohangKorea

Personalised recommendations