Advertisement

Metals and Materials International

, Volume 21, Issue 3, pp 569–579 | Cite as

Simple shear model of twist extrusion and its deviations

  • Marat I. Latypov
  • Myoung-Gyu Lee
  • Yan Beygelzimer
  • Roman Kulagin
  • Hyoung Seop Kim
Article

Abstract

Twist extrusion (TE) is a severe plastic deformation method with a potential for commercialization. Advancing TE toward industrial use requires in-depth understanding of deformation during the process and its dependence on processing factors. The helical flow model introduced with the concept of TE provides for a concise description of deformation in the process. To date, however, it was unclear under which conditions the helical flow model yields accurate predictions of deformation in TE. This paper presents a systematic finite-element study performed to identify effects of some key process and material factors on deformation in TE and its departure from the ideal deformation described by the helical flow model. It was found that high strain-hardening rate and friction lead to violations of the assumptions of the helical flow model and that these violations result in departure from the ideal deformation. Deviations from the ideal deformation tend to increase on decreasing the length of the twist channel. Friction effects appear especially critical to be considered for accurate prediction of deformation in TE. Finite-element simulations taking friction into account show good qualitative agreement with earlier marker-insert experiments. The results of the present finite-element study allowed for defining the simple shear model of TE.

Keywords

Severe plastic deformation simple shear extrusion plasticity metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Beygelzimer, D. Orlov, and V. Varyukhin, Proc. Ultrafine Grained Materials II at TMS 2002 (eds. Y.T. Zhu, T.G. Langdon, R. Mishra, S. Semiatin, M. Saran, T. Lowe), pp. 297–304, The Minerals, Metals and Materials Society, Warrendale, PA (2002).Google Scholar
  2. 2.
    Y. Beygelzimer, V. Varyukhin, D. Orlov, and S. Synkov, Twist Extrusion- A Process for Strain Accumulation, pp.37–50, TEAN, Donetsk, Ukraine (2003).Google Scholar
  3. 3.
    Y. Beygelzimer, A. Reshetov, O. Prokof'eva, and R. Kulagin, J. Mater. Process. Tech. 209, 3650 (2009).CrossRefGoogle Scholar
  4. 4.
    R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin, and Y. Beygelzimer, Metall. Mater. Trans. A 44, 3211 (2013).CrossRefGoogle Scholar
  5. 5.
    R. Kulagin, PhD thesis, Donetsk Institute for Physics and Engineering, pp.94–101, Donetsk (2014).Google Scholar
  6. 6.
    W. Wang, Y. Song, D. Gao, E. Y. Yoon, D. J. Lee, C. S. Lee, and H. S. Kim, Met. Mater. Int. 19, 1021 (2013).CrossRefGoogle Scholar
  7. 7.
    M. I. Latypov, E. Y. Yoon, D. J. Lee, R. Kulagin, Y. Beygelzimer, M. S. Salehi, and H. S. Kim, Metall. Mater. Trans. A 45, 2232 (2014).CrossRefGoogle Scholar
  8. 8.
    H. S. Kim, S. I. Hong, Y. S. Lee, A. A. Dubravina, and I. V. Alexandrov, J. Mater. Process. Tech. 142, 334 (2003).CrossRefGoogle Scholar
  9. 9.
    M. I. Latypov, I. V. Alexandrov, Y. E. Beygelzimer, S. Lee, and H. S. Kim, Comp. Mater. Sci. 60, 194 (2012).CrossRefGoogle Scholar
  10. 10.
    S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Process. Tech. 201, 32 (2008).CrossRefGoogle Scholar
  11. 11.
    Y. Song, W. Wang, D. Gao, E. Y. Yoon, D. J. Lee, and H. S. Kim, Met. Mater. Int. 20, 445 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Hasani, R. Lapovok, L.S. Tóth, and A. Molinari, Scripta Mater. 58, 771 (2008).CrossRefGoogle Scholar
  13. 13.
    I. J. Beyerlein and L. S. Tóth, Prog. Mater. Sci. 54, 427 (2009).CrossRefGoogle Scholar
  14. 14.
    V. Zhernakov, I. Budilov, I. Alexandrov, and I. Beyerlein, Int. J. Mater. Res. 98, 178 (2007).CrossRefGoogle Scholar
  15. 15.
    D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita, Materials Science and Engineering A, 519, 105 (2009).CrossRefGoogle Scholar
  16. 16.
    H. S. Kim, S.-H. Joo, and H. J. Jeong, Korean J. Met. Mater. 52, 87 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Orlov, Y. Todaka, M. Umemoto, and Y. Beygelzimer, N. Tsuji, Mater. trans. 53, 17 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji, Materials Science and Engineering A, 499, 427 (2009).CrossRefGoogle Scholar
  19. 19.
    I. Beyerlein, R. Field, K. Hartwig, and C. Necker, J. Mater. Sci. 43, 7465 (2008).CrossRefGoogle Scholar
  20. 20.
    S. Akbari Mousavi, A. Shahab, and M. Mastoori, Mater. Design 29, 1316 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Azushima and H. Kudo, CIRP Annals- Manufacturing Technology, 44, 209 (1995).CrossRefGoogle Scholar
  22. 22.
    V. Segal, Mater. Sci. Eng. A, 197, 157 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marat I. Latypov
    • 1
  • Myoung-Gyu Lee
    • 2
  • Yan Beygelzimer
    • 3
  • Roman Kulagin
    • 3
  • Hyoung Seop Kim
    • 1
  1. 1.Department of Materials Science and EngineeringPOSTECHPohangRepublic of Korea
  2. 2.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Department of High Pressure Physics and Promising TechnologiesDonetsk Institute for Physics and Engineering named after A.A. Galkin of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations