Metals and Materials International

, Volume 21, Issue 2, pp 391–401 | Cite as

Effect of processing routes in a multi-pass continuous hybrid process on mechanical properties, microstructure, and texture evolutions of low-carbon steel wires

  • Sun Kwang Hwang
  • Hyun Moo Baek
  • Ho Seon Joo
  • Yong-Taek Im
Article

Abstract

In this work, a multi-pass continuous hybrid (CH) process was experimentally applied with up to five passes with three processing routes, A, Bc, and C, to check the practicality of the processing routes and investigate their effect on the mechanical properties, microstructure, and texture evolutions of low-carbon steel wires. According to the present investigation, the wires processed by the 5th pass CH process with route A showed the highest ultimate tensile strength value (762 MPa) compared to those for routes Bc (718 MPa) and C (720 MPa), respectively. Based on the compression test results, the CH processed wire showed good workability when the aspect ratio was smaller than 2.4 for all the processing routes. According to the microstructure and texture evolutions, the grain sizes of the 5th pass CH processed wires decreased for all the processing routes than that of the initial specimen, and the wires showed mixed texture distribution of shear and drawing texture components. From the present investigation, it was concluded that the processing routes of the CH process could strongly affect the microstructure and texture evolutions, resulting in changes of the mechanical properties and workability of the low-carbon steel wires.

Keywords

metals deformation mechanical properties microstructure texture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Song, W. Wang, D. Gao, E. Y. Yoon, D. J. Lee, and H. S. Kim, Met. Mater. Int. 20, 445 (2014).CrossRefGoogle Scholar
  2. 2.
    B. Chen, C. Lu, D. Lin, and X. Zeng, Met. Mater. Int. 20, 285 (2014).CrossRefGoogle Scholar
  3. 3.
    C. C. Hsieh, M. S. Shi, and W. Wu, Met. Mater. Int. 18, 1 (2012).CrossRefGoogle Scholar
  4. 4.
    G. N. Hadi, N. A. Mahmoud, M. Arya, and Z. Cyrus, Met. Mater. Int. 20, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    K. Hajizadeh and B. Eghbali, Met. Mater. Int. 20, 343 (2014).CrossRefGoogle Scholar
  6. 6.
    H. S. Kim, S. H. Joo, and H. J. Jeong, Korean J. Met. Mater. 52, 87 (2014).CrossRefGoogle Scholar
  7. 7.
    K. H. Lee and S. I. Hong, Korean J. Met. Mater. 51, 621 (2013).Google Scholar
  8. 8.
    U. Chakkingal, A. B. Suriadi, and P. F. Thomson, Scr. Mater. 39, 667 (1998).CrossRefGoogle Scholar
  9. 9.
    U. Chakkingal, A. B. Suriadi, and P. F. Thomson, Mater. Sci. Eng. A 266, 241 (1999).CrossRefGoogle Scholar
  10. 10.
    J. León and C. J. Luis, Mater. Sci. Forum 526, 19 (2006).CrossRefGoogle Scholar
  11. 11.
    S. K. Hwang, Y. G. Jin, I. H. Son, K. H. Rhee, D. L. Lee, and Y. T. Im, Int. J. Mech. Sci. 53, 479 (2011).CrossRefGoogle Scholar
  12. 12.
    S. K. Hwang, H. M. Baek, J. W. Lee, I. H. Son, Y. T. Im, and C. M. Bae, J. Mater. Process. Technol. 214, 318 (2014).CrossRefGoogle Scholar
  13. 13.
    J. W. Lee, H. M. Baek, S. K. Hwang, I. H. Son, C. M. Bae, and Y. T. Im, Mater. Des. 55, 898 (2014).CrossRefGoogle Scholar
  14. 14.
    S. K. Hwang, Y. G. Jin, H. M. Baek, D. K. Kim, I. H. Son, and Y. T. Im, Steel Res. Int. Special Edition: ICTP 2011, 314 (2011).Google Scholar
  15. 15.
    S. K. Hwang, H. M. Baek, I. H, Son, Y. T. Im, and C. M. Bae, Mater. Sci. Eng. A 579, 118 (2013).CrossRefGoogle Scholar
  16. 16.
    J. H. Kim, S. K. Hwang, Y. T. Im, I. H. Son, and C. M. Bae, Mater. Sci. Eng. A 552, 316 (2012).CrossRefGoogle Scholar
  17. 17.
    S. K. Hwang, H. M. Baek, Y. T. Im, I. H. Son, C. M. Bae, and H. W. Lee, J. Mater. Process. Technol. 214, 1398 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Ito and Z. Horita, Mater. Sci. Eng. A 503, 32 (2009).CrossRefGoogle Scholar
  19. 19.
    Sugondo, J. A. Szpunar, and P. Gangli, J. Mater. Process. Technol. 16, 305 (1991).Google Scholar
  20. 20.
    V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, Izvestia Akademii nauk SSSR. Metally 1, 115 (1981).Google Scholar
  21. 21.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Mater. Sci. Eng. A 257, 328 (1998).CrossRefGoogle Scholar
  22. 22.
    J. S. Choi, Y. G. Jin, H. C. Lee, and Y. T. Im, Mater. Trans. 52, 173 (2011).CrossRefGoogle Scholar
  23. 23.
    J. S. Choi, S. Nawaz, S. K. Hwang, H. C. Lee, and Y. T. Im, Int. J. Mech. Sci. 52, 1269 (2010).CrossRefGoogle Scholar
  24. 24.
    ASTM Committee E28.04, E8M-04: Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken (2006).Google Scholar
  25. 25.
    Y. Fukuda, K. Oh-ishi, Z. Horita, and T. G. Langdon, Acta Mater. 50, 1359 (2002).CrossRefGoogle Scholar
  26. 26.
    S. Li, X. Li, and L. Yang, Acta Mater. 61, 4398 (2013).CrossRefGoogle Scholar
  27. 27.
    P. B. Prangnell, A. Gholinia, and V. M. Markushev, Proceedings of the NATO Advanced Research Workshop on Investigation and Applications of Severe Plastic Deformation (Eds.T. C. Lowe and R. Z. Valiev), p.65, Kluwer Academic Publisher, Moscow, Russia (1999).Google Scholar
  28. 28.
    T. G. Langdon, M. Furukawa, M. Nemoto, Z. Horita, and J. Organomet, Chem. 52, 30 (2000).Google Scholar
  29. 29.
    Y. T. Zhu and T. C. Lowe, Mater. Sci. Eng. A 291, 46 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sun Kwang Hwang
    • 1
  • Hyun Moo Baek
    • 2
  • Ho Seon Joo
    • 3
  • Yong-Taek Im
    • 3
    • 4
  1. 1.Ultimate Manufacturing Technology R&BD GroupKITECHDaeguKorea
  2. 2.Land Systems Engineering TeamChangwon Regional Center, DTaQChangwonKorea
  3. 3.Department of Mechanical EngineeringKAISTDeajeonKorea
  4. 4.Office of the PresidentKIMMDaejeonKorea

Personalised recommendations