Advertisement

Metals and Materials International

, Volume 21, Issue 2, pp 227–231 | Cite as

Determination of the deformation mechanism of Fe-Mn alloys

  • Minho Jo
  • Yang Mo Koo
  • Se Kyun KwonEmail author
Article

Abstract

The energy parameters of planar defects are decisive for understanding the deformation mechanisms of metals. The stacking fault energy has been regarded as a key parameter to determine the activation of the deformation mechanisms of the face-centered cubic metals and alloys. However, it is still under a long debate why the stacking fault energy can be treated to be such an exclusive parameter among the general planar fault energies. We have employed molecular dynamics method to examine the effects of Mn alloying on the deformation behavior of austenitic Fe-Mn systems. The energies of stable and unstable states are calculated by sliding the (111) plane and are analyzed in two different schemes, stacking fault energy and energy barriers, which leads to a contradiction between them. We show that a linear relationship can be identified among the energy barriers. This finding is used to identify the activated deformation mechanism. A new parameter is also suggested to characterize the material deformation.

Keywords

alloys deformation twinning plasticity computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity. 16, 1391 (2000).CrossRefGoogle Scholar
  2. 2.
    J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
  3. 3.
    S. Cotes, M. Sade, and A. F. Guillermet, Metall. Mater. Trans. A 26, 1957 (1995).CrossRefGoogle Scholar
  4. 4.
    S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004).CrossRefGoogle Scholar
  5. 5.
    J. S. Jeong, Y. M. Koo, I. K. Jeong, S. K. Kim, and S. K. Kwon, Mater. Sci. Eng. A 530, 128 (2011).CrossRefGoogle Scholar
  6. 6.
    J. S. Jeong, W. Woo, K. H. Oh, S. K. Kwon, and Y. M. Koo, Acta Mater. 60, 2290 (2012).CrossRefGoogle Scholar
  7. 7.
    L. Remy and A. Pineau, Mater. Sci. Eng. 26, 123 (1976).CrossRefGoogle Scholar
  8. 8.
    B.-H. Song, J. Kim, S. Jeong, I. Choi, and Y.-K. Lee, Korean J. Met. Mater. 52, 1 (2014).CrossRefGoogle Scholar
  9. 9.
    J. E. Jung, J. Park, J.-S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Y. Choi, S. W. Hwang, M. C. Ha, and K.-T. Park, Met. Mater. Int. 20, 893 (2014).CrossRefGoogle Scholar
  11. 11.
    O. Bouaziz, S. Allain, and C. P. Scott, Scripta Mater. 58, 484 (2008).CrossRefGoogle Scholar
  12. 12.
    O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 319, 246 (2001).CrossRefGoogle Scholar
  13. 13.
    B. X. Huang, X. D. Wang, Y. H. Rong, L. Wang, and L. Jin, Mater. Sci. Eng. A 438–440, 306 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Allain, J.-P. Chateau, and O. Bouaziz, Mater. Sci. Eng. A 387–389, 143 (2004).CrossRefGoogle Scholar
  15. 15.
    T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, Acta Mater. 58, 3173 (2010).CrossRefGoogle Scholar
  16. 16.
    M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
  17. 17.
    S. Lu, Q.-M. Hu, B. Johansson, and L. Vitos, Acta Mater. 59, 5728 (2011).CrossRefGoogle Scholar
  18. 18.
    V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 3, 43 (2004).CrossRefGoogle Scholar
  19. 19.
    H. Van Swygenhoven, P. M. Derlet, and A. G. Frøseth, Nat. Mater. 3, 399 (2004).CrossRefGoogle Scholar
  20. 20.
    J. A. Zimmerman, H. Gao, and F. F. Abraham, Model. Simul. Mater. Sc. 8, 103 (2000).CrossRefGoogle Scholar
  21. 21.
    S. A. Kibey, L. L. Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, and D. D. Johnson, Phys. Rev. B 79, 214202 (2009).CrossRefGoogle Scholar
  22. 22.
    A. Frøseth, H. Van Swygenhoven, and P. M. Derlet, Acta Mater. 52, 2259 (2004).CrossRefGoogle Scholar
  23. 23.
    J. Schiøtz, F. D. DiTolla, and K. W. Jacobsen, Nature 391, 561 (1998).CrossRefGoogle Scholar
  24. 24.
    Y. M. Kim, Y.-H. Shin, and B.-J. Lee, Acta Mater. 57, 474 (2009).CrossRefGoogle Scholar
  25. 25.
    B.-J. Lee, J.-H. Shim, and M. I. Baskes, Phys. Rev. B 68, 144112 (2003).CrossRefGoogle Scholar
  26. 26.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009).CrossRefGoogle Scholar
  27. 27.
    E. B. Tadmor and N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Kibey, J. Liu, D. Johnson, and H. Sehitoglu, Appl. Phys. Lett. 91, 181916 (2007).CrossRefGoogle Scholar
  29. 29.
    B. Q. Li, S. M. Sui, and S. X. Mao, J. Mater. Sci. Technol. 27, 97 (2011).CrossRefGoogle Scholar
  30. 30.
    Z. H. Jin, S. T. Dunham, H. Gleiter, H. Hahn, and P. Gumbsch, Scripta Mater. 64, 605 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Jo, Y. M. Koo, B.-J. Lee, B. Johansson, L. Vitos, and S. K. Kwon, P. Natl. Acad. Sci. USA 111, 6560 (2014).CrossRefGoogle Scholar
  32. 32.
    W. Li, S. Lu, Q.-M. Hu, S. K. Kwon, B. Johansson, and L. Vitos, J. Phys.: Condens. Mat. 26, 265005 (2014).Google Scholar
  33. 33.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010).CrossRefGoogle Scholar
  34. 34.
    C. S. Hong, N. R. Tao, K. Ju, and X. Huang, Scripta Mater. 61, 289 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea
  2. 2.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations