Metals and Materials International

, Volume 21, Issue 2, pp 422–428 | Cite as

Preparation of a sample with a single MgH2 phase by horizontal ball milling and the first hydriding reaction of 90 wt% Mg-10 wt% MgH2

  • Seong-Hyeon Hong
  • Myoung Youp SongEmail author


In order to prepare an additive-free sample with a single MgH2 phase, 90 wt% Mg-10 wt% MgH2 (named 90Mg-10MgH2) was milled under a hydrogen atmosphere in a horizontal ball mill, and then hydrided. The hydrogen absorption and desorption properties of the prepared samples were investigated, and compared with those of milled pure Mg and purchased MgH2. X-ray diffraction analysis, measurement of specific BET surface areas, and observation of the prepared samples by scanning electron microscope were performed. The 90Mg-10MgH2 sample after hydriding-dehydriding cycling had small and large particles with fine particles on their surfaces, and had much finer particles and more defects than the milled pure Mg sample after hydridingdehydriding cycling. The specific BET surface areas of the milled Mg and 90Mg-10MgH2 were measured as 7.81 and 99.81 m2/g, respectively. A sample that had almost a single MgH2 phase could be prepared by horizontal ball milling and the first hydriding reaction of 90Mg-10MgH2. 90Mg-10MgH2 released 5.82 wt% H for about 70 min, while unmilled MgH2 (Aldrich) released 6.04 wt% H for about 100 min, at 648 K.


hydrogen absorbing materials mechanical alloying/milling microstructure X-ray diffraction a single MgH2 phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 51, 671 (2013).Google Scholar
  2. 2.
    M. Y. Song, S. N. Kwon, H. R. Park, and D. R. Mumm, Met. Mater. Int. 19, 1139 (2013).CrossRefGoogle Scholar
  3. 3.
    J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).CrossRefGoogle Scholar
  4. 4.
    J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).CrossRefGoogle Scholar
  5. 5.
    E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 17, 787 (1982).CrossRefGoogle Scholar
  6. 6.
    S. H. Hong and M. Y. Song, Met. Mater. Int. 19(5), 1145 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 51, 607 (2012).Google Scholar
  8. 8.
    M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).CrossRefGoogle Scholar
  9. 9.
    H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloy Compd. 509, 4268 (2011).CrossRefGoogle Scholar
  10. 10.
    P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012).CrossRefGoogle Scholar
  11. 11.
    Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007).CrossRefGoogle Scholar
  12. 12.
    Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Y. Song, H. J. Ahn, and H. R. Park, Int. J. Hydrogen Energy 16, 223 (1991).CrossRefGoogle Scholar
  15. 15.
    M. Y. Song and H. R. Park, Korean J. Met. Mater. 28, 873 (1990).Google Scholar
  16. 16.
    B. Tanguy, J. L. Soubeyroux, and M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).CrossRefGoogle Scholar
  17. 17.
    M. Y. Song, J. Mater. Sci. 30, 1343 (1995).CrossRefGoogle Scholar
  18. 18.
    H. Y. Kwon and I. G. Kang, Introduction to Hydrogen-storage Alloys (Physical Properties and Applications), pp.84–85, Gold Publishing, Seoul (2003).Google Scholar
  19. 19.
    A. Karty, J. Grunzweig-Genossar, and R. S. Rudman, J. Appl. Phys. 50, 7200 (1979).CrossRefGoogle Scholar
  20. 20.
    M. Y. Song, J.-P. Manaud, and B. Darriet, J. Alloys Compd. 282, 243 (1999).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Small and Medium Sized Corporate Supporting DepartmentKorea Institute of Materials and Science (KIMS), Affiliated with Korea Institute of Machinery and MaterialsChangwon, Gyeonsangnam-doKorea
  2. 2.Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research InstituteChonbuk National UniversityJeonjuKorea

Personalised recommendations