Metals and Materials International

, Volume 20, Issue 6, pp 1037–1042 | Cite as

Effect of annealing with pressure on tungsten film properties fabricated by atmospheric plasma spray

  • Jun Young Park
  • Seung Jae Yang
  • Young Gil Jin
  • Chong Rae Park
  • Gon Ho Kim
  • Heung Nam Han
Article

Abstract

In this study, the effects of various annealing conditions on tungsten film fabricated by atmospheric plasma spraying (APS) were studied to analyze the APS tungsten film and an adequate strategy for the improvement of the mechanical properties of the tungsten film. In general, the use of the APS method to create tungsten films results in splat boundaries in an oxidized state not unlike semi-cracks. We therefore conducted vacuum annealing of the tungsten film at 800 °C and 950 °C under less than 0.1 Torr pressure to strengthen the binding force between splats. Additionally, we conducted press annealing in order to achieve a more dramatic improvement. The micro-hardness of the as-sprayed tungsten film, the vacuum-annealed tungsten film, and the press-annealed tungsten film were 1.55, 1.52, and 2.19 GPa respectively. By utilizing analysis methods such as electron back-scatter diffraction, scanning electron microscopy, Raman spectroscopy, and nano-indentation, we found that filling the gap between the splats, while eliminating the oxides, played a critical role in enhancing the mechanical properties of the tungsten film fabricated by means of the APS method.

Keywords

plasma spray tungsten film annealing indentation splat boundary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Nucl. Fusion. 41, 1947 (2001).CrossRefGoogle Scholar
  2. 2.
    I. Smid, E. Kny, M. Scheerer, P. A. Hahn, G. Korb, J. Linke, and G. Vieider, Fusion Eng. Des. 42, 511 (1998).CrossRefGoogle Scholar
  3. 3.
    H. Bolt, B. V, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, and A. U. Team, J. Nucl. Mater. 329, 66 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Yahiro, M. Mitsuhara, K. Tokunakga, N. Yoshida, T. Hirai, K. Ezato, S. Suzuki, M. Akiba, and H. Nakashima, J. Nucl. Mater. 386–388, 784 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Bisio, V. Branca, M. Di Marco, A. Federici, M. Grattarola, G. Gualco, P. Guarnone, U. Luconi, M. Merola, C. Ozzano, G. Pasquale, P. Poggi, S. Rizzo, and F. Varone, Fusion Eng. Des. 75–79, 277 (2005).CrossRefGoogle Scholar
  6. 6.
    H. Jianjun, L. Xinjun, C. Jun, L. Ying, Q. Bing, J. Shishou, W. Xisheng, and L. Guangnan, J. Nucl. Mater. 432, 16 (2013).CrossRefGoogle Scholar
  7. 7.
    R. E. Nygren, R. Raffray, D. Whyte, M. A. Urickson, M. Baldwin, and L. L. Snead, J. Nucl. Mater. 417, 451 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Deschka, C. GarciaRosales, W. Hohenauer, R. Duwe, E. Gauthier, J. Linke, M. Lochter, W. Mallener, L. Plochl, P. Rodhammer, and A. Salito, J. Nucl. Mater. 233, 645 (1996).CrossRefGoogle Scholar
  9. 9.
    D. Y. Hu, X. B. Zheng, Y. R. Nlu, H. Ji, F. L. Chong, and J. L. Chen, J. Therm. Spray Technol. 17, 377 (2008).CrossRefGoogle Scholar
  10. 10.
    T. Hirai, A. Kreter, J. Linke, J. Malzbender, T. Ohgo, V. Philipps, G. Pintsuk, A. Pospieszczyk, Y. Sakawa, G. Sergienko, T. Tanabe, Y. Ueda, and M. Wada, Fusion Eng. Des. 81, 175 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Nakamura, S. Suzuki, T. Tanabe, M. Dairaku, K. Yokoyama, and M. Akiba, Fusion Eng. Des. 39–40, 295 (1998).CrossRefGoogle Scholar
  12. 12.
    B. C. Odegard, C. H. Cadden, R. D. Watson, and K. T. Slattery, J. Nucl. Mater. 258, 329 (1998).CrossRefGoogle Scholar
  13. 13.
    Z. J. Zhou, S. X. Song, W. Z. Yao, G. Pintsuk, J. Linke, S. Q. Guo, and C. C. Ge, Fusion Eng. Des. 85, 1720 (2010).CrossRefGoogle Scholar
  14. 14.
    Z. J. Yin, S. Y. Tao, and X. M. Zhou, Mater. Charact. 62, 90 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. R. Niu, X. B. Zheng, H. Ji, L. J. Qi, C. X. Ding, J. L. Chen, and G. N. Luo, Fusion Eng. Des. 85, 1521 (2010).CrossRefGoogle Scholar
  16. 16.
    S. L. Wang, H. X. Li, S. Y. Hwang, S. D. Choi, and S. Yi, Met. Mater. Int. 18, 607 (2012).CrossRefGoogle Scholar
  17. 17.
    B.-Y. Jeong, Korean J. Met. Mater. 50, 867 (2012).Google Scholar
  18. 18.
    S. J. Yang and C. R. Park, Adv. Mater. 24, 4010 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Guo, S. Amira, P. Gougeon, and X. G. Chen, Mater. Charact. 62, 865 (2011).CrossRefGoogle Scholar
  20. 20.
    T. H. Ahn, C. S. Oh, D. H. Kim, K. H. Oh, H. Bei, E. P. George, and H. N. Han, Scripta Mater. 63, 540 (2010).CrossRefGoogle Scholar
  21. 21.
    M. L. B. Palacio and B. Bhushan, Mater. Charact. 78, 1 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Kim, S. Choi, G. H. Kim, and S. H. Hong, Thin Solid Films. 518, 6369 (2010).CrossRefGoogle Scholar
  23. 23.
    H. K. Kang, J. Nucl. Mater. 335, 1 (2004).CrossRefGoogle Scholar
  24. 24.
    K. J. Lethy, R. V. Kumar, S. Potdar, A. P. Detty, A. H. Bahna, and V. P. M. Pillai, Phys. Scripta. 80 (2009).Google Scholar
  25. 25.
    A. Cremonesi, D. Bersani, P. P. Lottici, and G. Calestani, AIP Conference Proceedings. 1267, 593 (2010).CrossRefGoogle Scholar
  26. 26.
    E. Gulbransen and K. Andrew, J. Electrochem. Soc. 107, 619 (1960).CrossRefGoogle Scholar
  27. 27.
    E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds, Springer, New York, USA (1999).CrossRefGoogle Scholar
  28. 28.
    S. Cui, G. Lu, S. Mao, K. Yu, and J. Chen, Chem. Phys. Lett. 485, 64 (2010).CrossRefGoogle Scholar
  29. 29.
    U. Engel and H. Hübner, J. Mater. Sci. 13, 2003 (1978).CrossRefGoogle Scholar
  30. 30.
    S. Nair and J. Tien, Metall. Trans. A. 18, 97 (1987).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jun Young Park
    • 1
    • 2
  • Seung Jae Yang
    • 1
  • Young Gil Jin
    • 3
  • Chong Rae Park
    • 1
  • Gon Ho Kim
    • 3
  • Heung Nam Han
    • 1
  1. 1.Department of Materials Science and Engineering & Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea
  2. 2.Ferrous Alloy Department, Advanced Metallic Materials DivisionKorea Institute of Materials ScienceGyeongnamKorea
  3. 3.Department of Nuclear EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations