Advertisement

Metals and Materials International

, Volume 20, Issue 4, pp 577–583 | Cite as

Design of cost-effective Fe-based amorphous coating alloys having high amorphous forming ability by thermodynamic calculation

  • Seungmun Jung
  • Jeonghyeon Do
  • Dong-Geun Lee
  • Byeong-Joo Lee
  • Gil-up Cha
  • Sunghak LeeEmail author
Article

Abstract

In this study, new cost-effective Fe-based amorphous coating alloys having high amorphous forming ability were developed by varying the Fe content, while their microstructure, hardness, and corrosion resistance were also evaluated. Chemical compositions that have the lowest driving force of formation of crystalline phases such as Fe3P, Fe3C, and α-Fe were obtained from thermodynamically calculated phase diagrams of the representative FexAl2(P10.83C7.47B1.7)98-x alloy system at a crystallization temperature of 443 °C. Considering the intersections of driving force curves of Fe3P and Fe3C, Fe3P and α-Fe, and Fe3C and α-Fe, the Fe contents were found to be 77.8, 76.2, and 75.8 at.%, respectively. The microstructural analysis results of 1.5-mm-diameter suction-cast Fe-based alloys indicated that the Fe76.5Al2(P10.83C7.47B1.7)21.5 alloy had a fully amorphous microstructure, whereas crystalline phases were formed in other alloys. This alloy showed a better hardness and corrosion resistance than conventional thermal spray coating alloys, and its production cost could also be reduced by using less expensive alloying elements, which could provide a good way to practically apply this alloy to Fe-based amorphous thermal spray coatings.

Keywords

amorphous materials driving force of formation casting phase transformation microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  2. 2.
    V. Ponnambalam, S. J. Poon, G. J. Shiflet, V. M. Keppens, R. Taylor, and G. Petculescu, Appl. Phys. Lett. 83, 1131 (2003).CrossRefGoogle Scholar
  3. 3.
    Z. P. Lu and C. T. Liu, Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
  4. 4.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater. 29, 2645 (2001).CrossRefGoogle Scholar
  5. 5.
    W. L. Johnson, MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
  6. 6.
    H. Kim, K. Lim, B. Seong, and C. Park, J. Mater. Sci. 36, 49 (2001).CrossRefGoogle Scholar
  7. 7.
    S. L. Wang, H. X. Li, S. Y. Hwang, S. D. Choi, and S. Yi, Met. Mater. Int. 18, 607 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Kishitake, H. Era, and F. Otsubo, J. Therm. Spray Technol. 5, 476 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Inoue and J. S. Gook, Mater. Trans. JIM. 36, 1180 (1995).CrossRefGoogle Scholar
  10. 10.
    H. Li and S. Yi, Mater. Sci. Eng. 449, 189 (2007).CrossRefGoogle Scholar
  11. 11.
    Y. Wu, X. D. Hui, Z. P. Lu, Z. Y. Liu, L. Liang, and G. L. Chen, J. Alloys Compd. 467, 187 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Inoue, A. Takeuchi, and T. Zhang, Metall. Mater. Trans. A 29A, 1779 (1998).CrossRefGoogle Scholar
  13. 13.
    J. Do, S. Jung, H.-J. Lee, B.-J. Lee, G.-U. Cha, C. Y. Jo, and S. Lee, Metall. Mater. Trans. A 44A, 2573 (2013).CrossRefGoogle Scholar
  14. 14.
    M. G. Scott and P. Ramachandrarao, Mater. Sci. Eng. A29, 137 (1977).CrossRefGoogle Scholar
  15. 15.
    Z. Long, Y. Shao, G. Xie, P. Zhang, B. Shen, and A. Inoue, J. Alloys Compd. 462, 52 (2008).CrossRefGoogle Scholar
  16. 16.
    B. Sundman, B. Jansson, and J.-O. Andersson, Calphad. 9, 153 (1985).CrossRefGoogle Scholar
  17. 17.
    TCFE2000, The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH, Stockholm (1999).Google Scholar
  18. 18.
    B.-J. Lee, Pohang University of Science and Technology (POSTECH), Korea, unpublished update of thermodynamic database.Google Scholar
  19. 19.
    V. Raghavan, Phase Diagrams of Ternary Iron Alloys, Indian Institute of Metals, Calcutta (1988).Google Scholar
  20. 20.
    M. Tavoosi, F. Karimzadeh, M. H. Enayati, S. Lee, and H. S. Kim, Met. Mater. Int. 19, 901 (2013).CrossRefGoogle Scholar
  21. 21.
    D. H. Jack and K. H. Jack, Mater. Sci. Eng. 11, 1 (1973).CrossRefGoogle Scholar
  22. 22.
    J. D. Robson and H. K. D. H. Bhadeshia, Calphad. 20, 447 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Komaki, T. Mimura, R. Kurahasi, M. Kouzaki, and T. Yamasaki, Mater, Trans. JIM. 52, 474 (2011).CrossRefGoogle Scholar
  24. 24.
    T. E. Lister, R. N. Wright, P. J. Pinhero, and W. D. Swank, J. Therm. Spray Technol. 11, 530 (2002).CrossRefGoogle Scholar
  25. 25.
    M. Kim, S. Kim, S. Yoon, and S. Yi, Korean. J. Met. Mater. 52, 129 (2014).CrossRefGoogle Scholar
  26. 26.
    London Metal Exchange, http://www.lme.com (accessed June 25th of 2013).Google Scholar
  27. 27.
    MetalPrices.com, http://www.metalprices.com (accessed June 25th of 2013).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Seungmun Jung
    • 1
  • Jeonghyeon Do
    • 2
  • Dong-Geun Lee
    • 3
  • Byeong-Joo Lee
    • 1
  • Gil-up Cha
    • 4
  • Sunghak Lee
    • 1
    Email author
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Advanced Metallic Materials DivisionKorea Institute of Materials ScienceChangwonKorea
  3. 3.Light Metal DivisionKorea Institute of Materials ScienceChangwonKorea
  4. 4.Rolling Facilities Group, Pohang WorksPOSCOPohangKorea

Personalised recommendations