Metals and Materials International

, Volume 20, Issue 3, pp 451–458 | Cite as

Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process

  • Jeong-Hwan Song
  • Kyung-Su Nam
  • Jung-In Moon
  • Young-Jun Choi
  • Dae-Young LimEmail author


Oxide layers were prepared on Al-1050 substrates by an environmentally friendly plasma electrolytic oxidation process using an alkaline solution of Na2SiO3 (8 g/L) and NaOH (3 g/L) as the electrolyte. The effects of three different duty cycles (20%, 40%, and 60%) on the structure and hardness of the oxides were investigated. XRD analysis revealed that the oxides were mainly composed of α-Al2O3, γ-Al2O3, and mullite. The proportion of each phase depended on various electrical parameters, such as the duty cycle and frequency. The morphology, thickness, and the elemental distribution of the oxides were examined by scanning electron microscopy and energy dispersive spectroscopy. The thicknesses of the oxides were found to vary from 20 μm to more than 60 μm for various duty cycles, when identical treatment durations were used. The oxidation treatment also resulted in good adhesion between the oxide layer and the substrate. SEM images indicated that the oxide layers formed at the 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles, and slower growth rates than did those formed at the 20% duty cycle, under identical treatment durations. The oxides prepared at the 20% duty cycle showed smooth surfaces. The oxides layers were found to improve the micro-hardness of Al-1050. In particular, the oxide layers formed at the 40% duty cycle exhibited relatively better micro-hardness owing to their compact microstructures.

Key words

plasma electrolytic oxidation duty cycle surface modification x-ray diffraction hardness test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Xue, Z. Deng, Y. Lai, and R. Chen, J. Am. Ceram. Soc. 81, 1365 (1998).CrossRefGoogle Scholar
  2. 2.
    L. O. Snizhko, A. L. Yerokhin, A. Plikington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, Electrochim. Acta 49, 2085 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Tillous, T. Toll-Duchanoy, E. Bauer-Grosse, L. Hericher, and G. Geandier, Surf. Coat. Technol. 203, 2969 (2009).CrossRefGoogle Scholar
  4. 4.
    G. Sundararajan and L. Rama Krishna, Surf. Coat. Technol. 167, 269 (2003).CrossRefGoogle Scholar
  5. 5.
    A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999).CrossRefGoogle Scholar
  6. 6.
    S. Ono, T. Osaka, K. Asami, and N. Masuko, Corros. Res. 16, 175 (1998).Google Scholar
  7. 7.
    B. Navinšek, P. Panjan, and I. Milošev, Surf. Coat. Technol. 116–119, 476 (1999).CrossRefGoogle Scholar
  8. 8.
    J. M. Wheeler, J. A. Curran, and S. Shrestha, Surf. Coat. Technol. 207, 480 (2012).CrossRefGoogle Scholar
  9. 9.
    H. C. Yu, B. Z. Chen, X. Shi, X. Sun, and B. Li, Mater. Lett. 62, 2828 (2008).CrossRefGoogle Scholar
  10. 10.
    R. Sadeler, S. Atasoy, A. Arici, and Y. Totik, J. Mater. Eng. Perform. 18, 1280 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Tian, Z. Lou, S. Qi, and X. Sun, Surf. Coat. Technol. 154, 1 (2002).Google Scholar
  12. 12.
    P. A. Dearnley, J. Gummersbach, H. Weiss, A. A. Ogwu, and T. J. Davies, Wear 225–229, 127 (1999).CrossRefGoogle Scholar
  13. 13.
    S. V. Gnednekov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebrukhova, P. S. Gordienko, S. Iwatsubo, and A. Matsui, Surf. Coat. Technol. 145, 146 (2001).CrossRefGoogle Scholar
  14. 14.
    Y.-K. Kim, I. S. Park, S. J. Lee, and M.-H. Lee, Met. Mater. Int. 19, 353 (2013).CrossRefGoogle Scholar
  15. 15.
    H. Wu, J. Wang, B. Long, B. Long, Z. Jin, N. Wang, F. Yu, and D. Bi, Appl. Surf. Sci. 252, 1545 (2005).CrossRefGoogle Scholar
  16. 16.
    R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, and R. L. Jones, Surf. Coat. Technol. 199, 158 (2005).CrossRefGoogle Scholar
  17. 17.
    T. B. Wei, F. Y. Yan, and J. Tian, J. Alloy. Compd. 389, 169 (2005).CrossRefGoogle Scholar
  18. 18.
    F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardina, A. Viola, and J. Beauvir, Surf. Coat. Technol. 201, 8677 (2007).CrossRefGoogle Scholar
  19. 19.
    A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, and A. Mathews, Surf. Coat. Technol. 199, 150 (2005).CrossRefGoogle Scholar
  20. 20.
    B. H. Long, H. H. Wu, B. Y. Long, J. B. Wang, N. D. Wang, X. Y. Lü, Z. S. Jin, and Y. Z. Bai, J. Phys. D: Appl. Phys. 38, 3491 (2005).CrossRefGoogle Scholar
  21. 21.
    S. Xin, L. Song, R. Zhao, and X. Hu, Thin Solid Films 515, 326 (2006).CrossRefGoogle Scholar
  22. 22.
    G. Lv, W. Gu, H. Chen, W. Feng, M. L. Khosa, L. Li, E. Niu, G. Zhang, and S. Z. Yang, Appl. Surf. Sci. 253, 2947 (2006).CrossRefGoogle Scholar
  23. 23.
    S. G. Xin, L. X. Song, R. G. Zhao, and X. F. Hu, Surf. Coat. Technol. 199, 184 (2005).CrossRefGoogle Scholar
  24. 24.
    X. T. Sun, Z. H. Jiang, Z. P. Yao, and X. L. Zhang, Appl. Surf. Sci. 252, 441 (2005).CrossRefGoogle Scholar
  25. 25.
    J. I. Yu, J.-S. Yoon, J.-G. Yoon, J.-H. Kim, S.-D. Choi, H. K. Jang, J. Y. Yu, and I. H. Bae, Korean J. Met. Mater. 51, 405 (2013).CrossRefGoogle Scholar
  26. 26.
    A. G. Rakoch, V. V. Khokhlov, V. A. Bautin, N. A. Lebedeva, Yu. V. Magurova, and I. V. Bardin, Prot. Met. 42, 158 (2006).CrossRefGoogle Scholar
  27. 27.
    W. Xue, C. Wang, Y. Li, R. Chen, and T. Zhang, ISIJ Int. 42, 1273 (2002).CrossRefGoogle Scholar
  28. 28.
    M. D. Klapkiv, Mater. Sci. 31, 494 (1995).CrossRefGoogle Scholar
  29. 29.
    G. Yang, X. Lü, Y. Bai, H. Cui, and Z. Jin, J. Alloy. Compd. 345, 196 (2002).CrossRefGoogle Scholar
  30. 30.
    Z. Yao, Z. Jiang, X. Sun, S. Xin, and Z. Wu, Mater. Chem. Phys. 92, 408 (2005).CrossRefGoogle Scholar
  31. 31.
    F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G. E. Thompson, H. Habazaki, and K. Shimizu, J. Electrochem. Soc. 152, C382 (2005).CrossRefGoogle Scholar
  32. 32.
    G. C. Wood, P. Skeldon, G. E. Thompson, and K. Shimizu, J. Electrochem. Soc. 143, 74 (1996).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jeong-Hwan Song
    • 1
  • Kyung-Su Nam
    • 2
  • Jung-In Moon
    • 2
  • Young-Jun Choi
    • 3
  • Dae-Young Lim
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringPaiChai UniversityDaejeonKorea
  2. 2.Department of Materials EngineeringGraduate School of PaiChai UniversityDaejeonKorea
  3. 3.Department of Materials Science and EngineeringGraduate School of Korea UniversitySeoulKorea

Personalised recommendations