Advertisement

Metals and Materials International

, Volume 20, Issue 3, pp 445–450 | Cite as

Finite element analysis of the effect of friction in high pressure torsion

  • Yuepeng Song
  • Wenke Wang
  • Dongsheng Gao
  • Eun Yoo Yoon
  • Dong Jun Lee
  • Hyoung Seop Kim
Article

Abstract

High pressure torsion (HPT) is one of the most important techniques among various methods that create severe plastic deformation in the production of bulk materials with nano/ultrafine grained microstructures. Since the driving force in deforming the workpiece in HPT is surface friction, understanding of the friction effect is critical for successful application of HPT. In this study, the friction effect in HPT was analyzed using the finite element method. The distribution of effective strain on the contact surface of the HPT samples under different friction conditions was investigated. The friction force influenced the effective strain more in the middle and edge regions than in the central region. The condition for the minimum friction factor that could achieve a sticking condition between the surfaces of the dies, and the samples in the middle and edge regions, was investigated. There was a critical friction coefficient in which the effective strain varies sharply with an increasing friction coefficient.

Key words

severe plastic deformation plasticity work hardening finite element method grain size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Xie, J. Xie, Y. Hong, and X. Wu, Sci. China Tech. Sci. 53, 1534 (2010).CrossRefGoogle Scholar
  2. 2.
    H. S. Kim, Y. Estrin and M. B. Bush, Acta Mater. 48, 493 (2000).CrossRefGoogle Scholar
  3. 3.
    H. S. Kim and Y. Estrin, Appl. Phys. Lett. 79, 4115 (2001).CrossRefGoogle Scholar
  4. 4.
    H. S. Kim, C. Suryanarayana, and S. J. Kim, Powder Metall. 41, 217 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
  6. 6.
    B. Hadzima, M. Janeèek, Y. Estrin, and H. S. Kim, Mater. Sci. Eng. A 462, 243 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Vaseghi, A. K. Taheri, and H. S. Kim, Met. Mater. Int. 16, 363 (2010).CrossRefGoogle Scholar
  8. 8.
    G. Purcek, O. Saray, and O. Kul, Met. Mater. Int. 16, 145 (2010).CrossRefGoogle Scholar
  9. 9.
    S. C. Yoon, A. V. Nagasekhar, and H. S. Kim, Met. Mater. Int. 15, 215 (2009).CrossRefGoogle Scholar
  10. 10.
    H. S. Kim. M. H. Seo, and S. I. Hong, Mater. Sci. Eng. A 291, 86 (2000).CrossRefGoogle Scholar
  11. 11.
    H. S. Kim and Y. Estrin, Mater. Sci. Eng. A 410, 285 (2005).CrossRefGoogle Scholar
  12. 12.
    S.-H. Lee and J.-H. Kim, Korean J. Met. Mater. 51, 41 (2013).CrossRefGoogle Scholar
  13. 13.
    K. H. Lee and S. I. Hong, Korean J. Met. Mater. 51, 621 (2013).Google Scholar
  14. 14.
    C. Xu, Z. Horita, and T. G. Langdon, Acta Mater. 56, 5168 (2008).CrossRefGoogle Scholar
  15. 15.
    A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. McNelley, Mater. Sci. Eng. A 410, 277 (2005).CrossRefGoogle Scholar
  16. 16.
    L. Kurmanaeva, Y. Ivanisenko, J. Markmann, C. Kübel, A. Chuvilin, S. Doyle, R. Z. Valiev, and H. J. Fecht, Mater. Sci. Eng. A 527, 1776 (2010).CrossRefGoogle Scholar
  17. 17.
    A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
  18. 18.
    E. Y. Yoon, D. J. Lee, B. H. Park, M. R. Akbarpour, M. Farvizi, and H. S. Kim, Met. Mater. Int. 19, 927 (2013).CrossRefGoogle Scholar
  19. 19.
    W. Wang, Y. Song, D. Gao, E. Y. Yoon, D. J. Lee, C. S. Lee, and H. S. Kim, Met. Mater. Int. 19, 1021 (2013).CrossRefGoogle Scholar
  20. 20.
    E.-Y. Kim, J.-H. Cho, H.-W. Kim, and S.-H. Choi, Korean J. Met. Mater. 51, 41 (2013).Google Scholar
  21. 21.
    S. Lee, J.-S. Lee, Y.-B. Kim, G.-A. Lee, S.-P. Lee, I.-S. Son, J.-K. Lee, and D.-S. Bae, Korean J. Met. Mater. 51, 655 (2013).Google Scholar
  22. 22.
    E. K. Lee and S. I. Hong, Korean J. Met. Mater. 51, 15 (2013).Google Scholar
  23. 23.
    J. K. Lim, S. Y. Choi, K. H. Choe, S. S. Kim, and G. S. Cho, Korean J. Met. Mater. 51, 385 (2013).CrossRefGoogle Scholar
  24. 24.
    K. S. Lee, S. E. Lee, J. S. Kim, M. J. Kim, D. H. Bae, and Y. N. Kwon, Korean J. Met. Mater. 51, 535 (2013).Google Scholar
  25. 25.
    J. S. Kim, K. S. Lee, Y. N. Kwon, Y. S. Lee, S. Lee, and Y. W. Chang, Korean J. Met. Mater. 51, 547 (2013).Google Scholar
  26. 26.
    R. Z. Valiev, Y. V. Lvanisenko, E. F. Rauch, and B. Baudelet, Acta Mater. 44, 4705 (1996).CrossRefGoogle Scholar
  27. 27.
    F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan, Mater. Sci. Eng. A 387, 809 (2004).CrossRefGoogle Scholar
  28. 28.
    F. Wetshcer, R. Pippan, S. Sturm, F. Kauffmann, and C. Scheu, Metall. Mater. Trans. A 37, 1963 (2006).CrossRefGoogle Scholar
  29. 29.
    Y. Song, E. Y. Yoon, D. J. Lee, J. H. Lee, and H. S. Kim, Mater. Sci. Eng. A 528, 4840 (2011).CrossRefGoogle Scholar
  30. 30.
    S. Y. Kang and B. Ko, Korean J. Met. Mater. 51, 651 (2013).Google Scholar
  31. 31.
    S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Proc. Tech. 201, 32 (2008).CrossRefGoogle Scholar
  32. 32.
    R. B. Figueiredo, P. H. R. Pereira, M. T. P. Aguilar, P. R. Cetlin, and T. G. Langdon, Acta Mater. 60, 3190 (2012).CrossRefGoogle Scholar
  33. 33.
    S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Proc. Tech. 201, 32 (2008).CrossRefGoogle Scholar
  34. 34.
    H. S. Kim, J. Mater. Proc. Tech. 113, 617 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Mechanical and Electronic Engineering CollegeShandong Agricultural UniversityTai’anChina
  2. 2.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  3. 3.Shandong Provincial Key Laboratory of Horticultural Machineries and EquipmentsShandong Agricultural UniversityTai’anChina
  4. 4.Materials Deformation DepartmentKorea Institute of Materials ScienceChangwonKorea

Personalised recommendations