Metals and Materials International

, Volume 20, Issue 3, pp 405–415 | Cite as

Composition design of nanocrystalline bainitic steels by diffusionless solid reaction

  • Carlos Garcia-Mateo
  • Francisca G. Caballero
  • Thomas Sourmail
  • Juan Cornide
  • Veronique Smanio
  • Roberto Elvira
Article

Abstract

NANOBAIN is the term used to refer to a new generation of advanced steels capable of producing by isothermal transformation at low homologous temperatures, T/Tm∼0.25 where Tm is the absolute melting temperature, a nanocrystalline microstructure, composed exclusively of two phases, thin plates of bainitic ferrite separated by C enriched austenite. Such alloys are exclusively designed on the basis of bainitic transformation theory and some physical metallurgy principles. In this work, by designing a new set of alloys capable of producing such microstructure, a further step toward the industrialization of NANOBAIN is taken. Some important industrial requirements, including circumventing the inclusion of expensive alloying elements and the need for faster transformations, are also considered. For all the alloys, the experimental results validate the design procedure and they illustrate that the NANOBAIN concept is a step closer to industrialization, probing that it is possible to obtain nanocristalline bainite in simpler alloy systems and in shorter times than those reported previously.

Key words

nanostructured materials tempering phase transformation dilatometry bainite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Garcia-Mateo and H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 378, 289 (2004).CrossRefGoogle Scholar
  2. 2.
    G. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).Google Scholar
  3. 3.
    H. K. D. H. Bhadeshia, Bainite in Steels. Transformations, Microstructure and Properties, Institute of Materials, Minerals and Mining, London (2001).Google Scholar
  4. 4.
    H. K. D. H. Bhadeshia, Acta Metall. 29, 1117 (1981).CrossRefGoogle Scholar
  5. 5.
    H. K. D. H. Bhadeshia and A. R. Waugh, Acta Metall. 30, 775 (1982).CrossRefGoogle Scholar
  6. 6.
    C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1238 (2003).CrossRefGoogle Scholar
  7. 7.
    F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 18, 279 (2002).CrossRefGoogle Scholar
  8. 8.
    C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, ISIJ Int. 43, 1821 (2003).CrossRefGoogle Scholar
  9. 9.
    H. I. Aaronson, H. A. Domian, and G. M. Pound, Trans. Metall. AIME 236, 781 (1966).Google Scholar
  10. 10.
    F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 17, 517 (2001).CrossRefGoogle Scholar
  11. 11.
    C. Garcia-Mateo and F. G. Caballero, ISIJ Int. 45, 1736 (2005).CrossRefGoogle Scholar
  12. 12.
    E. Kozeschnik and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 24, 343 (2008).CrossRefGoogle Scholar
  13. 13.
    S. B. Singh and H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 245, 72 (1998).CrossRefGoogle Scholar
  14. 14.
    H. K. D. H. Bhadeshia and D. V. Edmonds, Met. Sci. 17, 411 (1983).CrossRefGoogle Scholar
  15. 15.
    V. Heuer, K. Löser, and J. Ruppel, HTM Haerterei Tech. Mitt. 64, 28 (2009).Google Scholar
  16. 16.
    C. H. Young and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 10, 209 (1994).CrossRefGoogle Scholar
  17. 17.
    F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown, Mater. Sci. Technol. 17, 512 (2001).CrossRefGoogle Scholar
  18. 18.
    F. G. Caballero, M. J. Santofimia, C. Capdevila, C. García-Mateo, and C. De García Andrés, ISIJ Int. 46, 1479 (2006).CrossRefGoogle Scholar
  19. 19.
    C. Garcia-Mateo and F. G. Caballero, Int. J. Mater. Res. 98, 137 (2007).CrossRefGoogle Scholar
  20. 20.
    F. G. Caballero, M. K. Miller, C. Garcia-Mateo, C. Capdevila, and C. Garcia de Andrés, JOM 60, 16 (2008).CrossRefGoogle Scholar
  21. 21.
    L. C. Chang and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 11, 874 (1995).CrossRefGoogle Scholar
  22. 22.
    C. G. de Andres, F. G. Caballero, C. Capdevila, and D. San Martin, Mater. Charact. 49, 121 (2002).CrossRefGoogle Scholar
  23. 23.
    C. G. de Andres, M. J. Bartolome, C. Capdevila, D. S. Martin, F. G. Caballero, and V. Lopez, Mater. Charact. 46, 389 (2001).CrossRefGoogle Scholar
  24. 24.
    C. Garcia-Mateo, F. G. Caballero, M. K. Miller, and J. A. Jimenez, J. Mater. Sci. 47, 1004 (2012).CrossRefGoogle Scholar
  25. 25.
    MTDATA, NPL Software Tool for the Calculation of Phase Equilibria and Thermodynamic Properties, National Physical Laboratory, Teddington, United Kingdom, 2006.Google Scholar
  26. 26.
    J. W. Cahn and W. C. Hagel, Decomposition of Austenite by Diffusional Processes, John Wiley, New York (1962).Google Scholar
  27. 27.
    A. S. Pandit, Theory of the Pearlite Transformation in Steels, University of Cambridge (2011).Google Scholar
  28. 28.
    H. K. D. H. Bhadeshia and D. V. Edmonds, Metall. Trans. A 10, 895 (1979).CrossRefGoogle Scholar
  29. 29.
    L. C. Chang and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 11, 105 (1995).CrossRefGoogle Scholar
  30. 30.
    I. B. Timokhina, H. Beladi, X. Y. Xiong, Y. Adachi, and P. D. Hodgson, Acta Mater. 59, 5511 (2011).CrossRefGoogle Scholar
  31. 31.
    E. Pereloma, H. Beladi, L. Zhang, and I. Timokhina, Metall. Mater. Trans. A 43, 3958 (2012).CrossRefGoogle Scholar
  32. 32.
    F. G. Caballero, H. W. Yen, M. K. Miller, J. R. Yang, J. Cornide, and C. Garcia-Mateo, Acta Mater. 59, 6117 (2011).CrossRefGoogle Scholar
  33. 33.
    H. K. D. H. Bhadeshia, Met. Sci. 16, 159 (1982).CrossRefGoogle Scholar
  34. 34.
    J. Cornide, C. Garcia-Mateo, C. Capdevila, and F. Caballero, J. Alloy. Compd. 577, S43–S47 (2012).CrossRefGoogle Scholar
  35. 35.
    K. J. Irvine, T. Gladman, and P. F. B., J. Iron Steel Inst. 207, 1017 (1969).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carlos Garcia-Mateo
    • 1
  • Francisca G. Caballero
    • 1
  • Thomas Sourmail
    • 2
  • Juan Cornide
    • 1
    • 3
  • Veronique Smanio
    • 2
  • Roberto Elvira
    • 4
  1. 1.Department of Physical Metallurgy, MATERALIA Research GroupNational Center for Metallurgical Research (CENIM-CSIC)MadridSpain
  2. 2.Ascometal-CREAS (Research Centre) MetallurgyHagondange CedexFrance
  3. 3.GPM UMR6634, BP12Université de RouenSt-Etienne-du-RouvrayFrance
  4. 4.Gerdau I+D EUROPA S. A. Barrio UgarteBasauriSpain

Personalised recommendations