Metals and Materials International

, Volume 20, Issue 2, pp 343–350 | Cite as

Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium

  • Kaveh Hajizadeh
  • Beitallah Eghbali


The present work investigates the microstructural and mechanical properties of commercial purity titanium after processing by a two-step severe plastic deformation procedure entailing warm equal channel angular pressing (ECAP) followed by cold rolling at liquid nitrogen temperature (LNT). The effect of subsequent cold rolling at room temperature is also investigated for comparison. After 10 passes of ECAP, an ultrafine-grained structure with average grain size of 213 nm was achieved. Subsequent cold rolling at LNT led to further refinement and decreased the grain size to 114 nm. Under these conditions, the material displayed high tensile strength of 995 MPa and high elongation to failure of 23%. These promising mechanical properties were interpreted in terms of characteristics of the microstructure: grain refinement, increased dislocation density, and a high fraction of high angle grain boundaries.

Key words

nanostructured materials severe plastic deformation mechanical properties transmission electron microscopy (TEM) titanium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).CrossRefGoogle Scholar
  2. 2.
    V. V. Stolyarov, Y. T. Zhu, G. I. Raab, A. I. Zharikov, and R. Z. Valiev, Mater. Sci. Eng. A. 385, 309 (2004).CrossRefGoogle Scholar
  3. 3.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
  4. 4.
    V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, and R. Z. Valiev, Nanostruct. Mater. 11, 947 (1999).CrossRefGoogle Scholar
  5. 5.
    V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, Mater. Sci. Eng. A. 299, 59 (2001).CrossRefGoogle Scholar
  6. 6.
    V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, Mater. Sci. Eng. A. 343, 43 (2003).CrossRefGoogle Scholar
  7. 7.
    D. H. Shin, I. Kim, J. Kim, Y. S. Kim, and S. L. Semiatin, Acta Mater. 51, 983 (2003).CrossRefGoogle Scholar
  8. 8.
    W. J. Kim, C. Y. Hyun, and H. K. Kim, Scripta Mater. 54, 1745 (2006).CrossRefGoogle Scholar
  9. 9.
    V. V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer, Mater. Sci. Eng. A 476, 98 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Fan, H. Jiang, X. Sun, J. Song, X. Zhang, and C. Xie, Mater. Sci. Eng. A 527, 45 (2009).CrossRefGoogle Scholar
  11. 11.
    X. Zhao, X. Yang, X. Liu, X. Wang, and T. G. Langdon, Mater. Sci. Eng. A. 527, 6335 (2010).CrossRefGoogle Scholar
  12. 12.
    G. Purcek, G. G. Yapici, I. Karaman, and H. J. Maier, Mater. Sci. Eng. A 528, 2303 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. J. Chen, Y. J. Li, and H. J. Roven, Scripta Mater. 64, 904 (2011).CrossRefGoogle Scholar
  14. 14.
    V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, Mater. Sci. Eng. A 303, 82 (2001).CrossRefGoogle Scholar
  15. 15.
    Y. T. Zhu, J. Y. Huang, J. Gubicza, T. Ungar, Y. M. Wang, E. Ma, and R. Z. Valiev, J. Mater. Res. 18, 1908 (2003).CrossRefGoogle Scholar
  16. 16.
    Y. M. Wang and E. Ma, Acta Mater. 52, 1699 (2004).CrossRefGoogle Scholar
  17. 17.
    G. I. Taylor, Proc. of the Royal society of London Series A, 145, 362 (1934).CrossRefGoogle Scholar
  18. 18.
    H. Conrad, Prog. Mater. Sci. 26, 123 (1981).CrossRefGoogle Scholar
  19. 19.
    X. F. Li, A. P. Dong, L. T. Wang, Z. Yu, and L. Meng, J. Alloy. Compd. 509, 4670 (2011).CrossRefGoogle Scholar
  20. 20.
    B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992).CrossRefGoogle Scholar
  21. 21.
    J. G. Sevillano, P. V. Houtte, and E. Aernoudt, Prog. Mater. Sci. 25, 69 (1980).CrossRefGoogle Scholar
  22. 22.
    I. J. Beyerlein and L. S. Toth, Prog. Mater. Sci. 54, 427 (2009).CrossRefGoogle Scholar
  23. 23.
    J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
  24. 24.
    D. Shechtman and D. G. Brandon, J. Mater. Sci. 8, 1233 (1973).CrossRefGoogle Scholar
  25. 25.
    R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Janecek, M. Popov, M. G. Krieger, R. J. Hellmig, and Y. Estrin, Mater. Sci. Eng. A. 462, 116 (2007).CrossRefGoogle Scholar
  27. 27.
    R. Z. Valiev, J. Mater. Sci. 42, 1483 (2007).CrossRefGoogle Scholar
  28. 28.
    R. Z. Valiev, I. V. Alexandrov, T. C. Lowe, and Y. T. Zhu, J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
  29. 29.
    G. E. Dieter, Mechanical Metallurgy, p.385, McGraw Hill, Singapore (1998).Google Scholar
  30. 30.
    R. Z. Valiev, A. V. Sergueeva, and A. K. Mukherjee, Scripta Mater. 49, 669 (2003).CrossRefGoogle Scholar
  31. 31.
    J. May, H. W. Hoppel, and M. Goken, Scripta Mater. 53, 189 (2005).CrossRefGoogle Scholar
  32. 32.
    F. D. Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies, and E. V. Pereloma, Acta Mater. 52, 4819 (2004).CrossRefGoogle Scholar
  33. 33.
    R. Z. Valiev, Proc. Int. Conf. of NanoSPD2 (eds. M. Zehetbauer, R. Z. Valiev), p.109, Wiley-VCH Verlag GmbH & Co. KgaA (2002).Google Scholar
  34. 34.
    Metals Handbook, in: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, vol. 2, 10th ed., p.609, ASM International (1990).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations