Metals and Materials International

, Volume 20, Issue 2, pp 297–305 | Cite as

Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling

Article

Abstract

This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s−1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.

Key words

metals welding ductility fracture computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Arkoosh and N. F. Fiore Metall. Trans. 3, 2235 (1972).CrossRefGoogle Scholar
  2. 2.
    W. Yeniscavich Weld. J. 45, 344s (1966).Google Scholar
  3. 3.
    B. Hemsworth, T. Boniszewski, and N. F. Eaton Met. Constr. Br. Weld. J. 1, 5 (1969).Google Scholar
  4. 4.
    F. N. Rhines and P. J. Wray Trans. ASM. 54, 117 (1961).Google Scholar
  5. 5.
    M. A. Abralov, and R. U. Abdurakhmanov Automation Welding 27, 7 (1974).Google Scholar
  6. 6.
    D. M. Haddrill and R. G. Baker Br. Weld J. 12, 411 (1965).Google Scholar
  7. 7.
    A. J. Ramirez and J. C. Lippold Mater. Sci. Eng. A 380, 259 (2004).CrossRefGoogle Scholar
  8. 8.
    F. F. Noecker II and J. N. DuPont Weld. J. 88, 7s (2009).Google Scholar
  9. 9.
    G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris, and J. J. Mcgee Weld. J. 87, 31s (2008).Google Scholar
  10. 10.
    M. G. Collins, A. J. Ramirez, and J. C. Lippold Weld. J. 83, 39s (2004).Google Scholar
  11. 11.
    K. Nishimoto, K. Saida, and H. Okauchi Sci. Technol. Weld. Joining 11, 471 (2006).CrossRefGoogle Scholar
  12. 12.
    K. Nishimoto, K. Saida, and H. Okauchi Sci. Technol. Weld. Joining 11, 462 (2006).CrossRefGoogle Scholar
  13. 13.
    E. F. Nippes, W. F. Savage, and B. J. Bystram Weld. J. 23, 183s (1955).Google Scholar
  14. 14.
    N. E. Nissley and J. C. Lippold Weld. J. 87, 257s (2008).Google Scholar
  15. 15.
    A. Chabenat, D. Pierron, A. Thomas, F. Faure, and C. Guyon, Appl. No. 10/639,680. United States Patent Pub. No. US 2004/0115086 A1, June 17 (2004).Google Scholar
  16. 16.
    S. D. Kiser, R. Zhang, and B. A. Baker, Proc. 8th Int. Conf. of Trends in Welding Research, p. 639, Pine-Mountain, GA, USA (2009).Google Scholar
  17. 17.
    A. J. Ramirez, J. W. Sowards, and J. C. Lippold J. of Mat. Proces. Tech. 179, 212 (2006).CrossRefGoogle Scholar
  18. 18.
    A. J. Ramirez and J. C. Lippold Mater. Sci. Eng. A 25, 245 (2004).CrossRefGoogle Scholar
  19. 19.
    N. E. Nissley and J. C. Lippold Weld. J. 88, 131s (2009).Google Scholar
  20. 20.
    E. A. Torres, R. Caram, and A. J. Ramirez Mater. Sci. Forum 638–642, 2858 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Unfried S. and A. J. Ramirez, Mater. Sci. Forum 706–709, 945 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Unfried S., E. A. Torres, and A. J. Ramirez, Hot Cracking Phenomena in Welds III, 1st ed., p.295. Springer-Verlag, Berlin (2011).CrossRefGoogle Scholar
  23. 23.
    N. Saunders, M. Fahrmann, and C. J. Small Proc. 9th Int. Symp. of Superalloys 2000, pp.803–811, Champion, PA, USA (2000).CrossRefGoogle Scholar
  24. 24.
    N. Saunders Proc. 8th Int. Symp. of Superalloys 1996 (eds. R.D.K. Kissinger et al.), p.115, PA, USA (1996).Google Scholar
  25. 25.
    A. Engström, L. Höglund, and J. Ågren Metall. Mat. Trans. A 25, 1127 (1994).CrossRefGoogle Scholar
  26. 26.
    L. Kaufman and H. Nesor Metall. Mat. Trans. A 5, 1617 (1974).CrossRefGoogle Scholar
  27. 27.
    A. J. Ramirez and C. M. Garzón Hot Cracking Phenomena in Welds II, 1st ed., pp.427, Springer-Verlag, Berlin (2008).CrossRefGoogle Scholar
  28. 28.
    N. Saunders, X. Li, A.P. Miodownik, and J.-P.H. Schillé J. Mater. Sci. 39, 7237 (2004).CrossRefGoogle Scholar
  29. 29.
    Q. Y. Hou, Y. Z. He, Q. A. Zhang, and J. S. Gao, Mater. Des. 28, 1982 (2007).CrossRefGoogle Scholar
  30. 30.
    L. N. Zimina, N. N. Burova, and O. V. Makushok, Met. Sci. Heat Treat. 28, 130 (1986).CrossRefGoogle Scholar
  31. 31.
    J. M. Dahl, W. F. Danesi, and R. G. Dunn, Metall. Trans. 4, 1087 (1973).CrossRefGoogle Scholar
  32. 32.
    J. Unfried, S., E. B. Fonseca, C. M. R. Afonso, and A. J. Ramirez, Mathematical Modelling of Weld Phenomena 9, pp.983–996 TU-Graz, Austria (2010).Google Scholar
  33. 33.
    T. Kraft and H. E. Exner Mater. Sci. Technol. 14, 377 (1998).CrossRefGoogle Scholar
  34. 34.
    M. Raghavan, R. Mueller, G. A. Vaughn, and S. Floreen Metall. Mat. Trans. A. 15, 783 (1984).CrossRefGoogle Scholar
  35. 35.
    M. J. Perricone and J. N. DuPont, Metall. Trans. A 37, 1267 (2006).CrossRefGoogle Scholar
  36. 36.
    PCC Energy Group, Technical Bulletin of Inconel Alloy 690, http://pccenergygroup.com/assets/global_docs/Inconel_alloy_690.pdf (2009).Google Scholar
  37. 37.
    C. Radrakrisnha and K. Prasad-Rao, J. Mater. Sci. 32, 1977 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Metals characterization and processing laboratoryBrazilian Nanotechnology National Laboratory, CNPEM/ABTLuS.CampinasBrazil
  2. 2.Faculdade de Engenharia Mecânica — FEMUniversidade Estadual de Campinas — UNICAMPCampinasBrazil
  3. 3.Programa de ingeniería mecánica. Grupo IMTEFUniversidad Autónoma del CaribeBarranquillaColombia

Personalised recommendations