Metals and Materials International

, Volume 20, Issue 1, pp 119–127 | Cite as

Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals

  • Yongjoon Kang
  • Jihun Jang
  • Joo Hyun Park
  • Changhee LeeEmail author


The phase transition behaviors of non-metallic inclusions as a function of Ti content were investigated by monitoring changes in the microstructure and mechanical properties of high-strength low-alloy steel multipass weld metals. Weld metals with Ti contents ranging from 0.007 to 0.17 wt% were prepared using a gas metal arc welding process. The inclusion analysis was performed based on thermodynamic calculations and transmission electron microscopy, accompanied by energy-dispersive spectrometry and selected area electron diffraction. With increase in the Ti content of weld metals, the chaotic arrangement of ferrite laths in the columnar zone was transited to a well aligned arrangement and the impact toughness of the weld metals drastically deteriorated in response to the decrease in the Mn content of the inclusion. The effective inclusion phase for intragranular nucleation contained considerable amounts of Mn and a Mn depleted zone was observed around the effective nucleant.

Key words

high-strength low-alloy steel welding nucleation transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Levine and D.C. Hill, Metall. Trans. A 8, 1453 (1977).CrossRefGoogle Scholar
  2. 2.
    R. A. Farrar and P. L. Harrison, J. Mater. Sci. 22, 3812 (1987).CrossRefGoogle Scholar
  3. 3.
    S. Ohkita and Y. Horii, ISIJ Int. 35, 1170 (1995).CrossRefGoogle Scholar
  4. 4.
    J.-S. Byun, J.-H. Shim, J.-Y. Suh, Y.-J. Oh, Y. W. Cho, J.-D. Shim, and D. N. Lee, Mat. Sci. Eng. A-Struct. 319–321, 326 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Díaz-Fuentes, A. Iza-Mendia, and I. Gutiérrez, Metall. Mater. Trans. A 34, 2505 (2003).CrossRefGoogle Scholar
  6. 6.
    T. Koseki and G. Thewlis, Mater. Sci. Tech. Ser. 21, 867 (2005).CrossRefGoogle Scholar
  7. 7.
    W. Wang, W. Yan, L. Zhu, P. Hu, Y. Shan, and K. Yang, Mater. Design 30, 3436 (2009).CrossRefGoogle Scholar
  8. 8.
    J. S. Lee, S. H. Jeong, D. Y. Lim, J. O. Yun, and M. H. Kim, Met. Mater. Int. 16, 827 (2010).CrossRefGoogle Scholar
  9. 9.
    L. Zhang, Y. Li, J. Wang, and Q. Jiang, ISIJ Int. 51, 1132 (2011).CrossRefGoogle Scholar
  10. 10.
    Q. L. Jiang, Y. J. Li, J. Wang, and L. Zhang, Mater. Sci. Tech. Ser. 27, 1565 (2011).CrossRefGoogle Scholar
  11. 11.
    J. H. Jeon, J. Y. Hong, and H. W. Lee, Korean J. Met. Mater. 51, 1 (2013).CrossRefGoogle Scholar
  12. 12.
    S. S. Babu and H. K. D. H. Bhadeshia, Mater. T. JIM 32, 679 (1991).Google Scholar
  13. 13.
    G. Thewlis, Mater. Sci. Tech. Ser. 10, 110 (1994).Google Scholar
  14. 14.
    S. S. Babu, Curr. Opin. Solid St. M. 8, 267 (2004).CrossRefGoogle Scholar
  15. 15.
    P. L. Harrison and R. A. Farrar, J. Mater. Sci. 16, 2218 (1981).CrossRefGoogle Scholar
  16. 16.
    J. M. Gregg and H. K. D. H. Bhadeshia, Metall. Mater. Trans. A 25, 1603 (1994).CrossRefGoogle Scholar
  17. 17.
    Ø. Grong, A. O. Kluken, H. K. Nylund, A. L. Dons, and J. Hjelen, Metall. Mater. Trans.A 26, 525 (1995).CrossRefGoogle Scholar
  18. 18.
    T. Yamada, H. Terasaki, and Y. Komizo, ISIJ Int. 49, 1059 (2009).CrossRefGoogle Scholar
  19. 19.
    T. Suzuki, J. Inoue, and T. Koseki, In: S. A. David, T. Debroy, J. N. Dupont, T. Koseki, and H. B. Smartt (Eds.), Trends in Welding Research, pp. 292–295, Pine Mountain, Georgia (2008).Google Scholar
  20. 20.
    J. M. Gregg and H. K. D. H. Bhadeshia, Acta Mater. 45, 739 (1997).CrossRefGoogle Scholar
  21. 21.
    A. G. Fox and D. G. Brothers, Scripta Metall. Mater. 32, 1061 (1995).CrossRefGoogle Scholar
  22. 22.
    J.-H. Shim, Y. W. Cho, S. H. Chung, J.-D. Shim, and D. N. Lee, Acta Mater. 47, 2751 (1999).CrossRefGoogle Scholar
  23. 23.
    J.-H. Shim, Y.-J. Oh, J.-Y. Suh, Y. W. Cho, J.-D. Shim, J.-S. Byun, and D. N. Lee, Acta Mater. 49, 2115 (2001).CrossRefGoogle Scholar
  24. 24.
    J.-H. Shim, J.-S. Byun, Y.W. Cho, Y.-J. Oh, J.-D. Shim, and D.N. Lee, Scripta Mater. 44, 49 (2001).CrossRefGoogle Scholar
  25. 25.
    J.-S. Byun, J.-H. Shim, Y. W. Cho, and D. N. Lee, Acta Mater. 51, 1593 (2003).CrossRefGoogle Scholar
  26. 26.
    G. Thewlis, J. A. Whiteman, and D. J. Senogles, Mater. Sci. Tech. Ser. 13, 257 (1997).Google Scholar
  27. 27.
    A. A. B. Sugden and H. K. D. H. Bhadeshia, Metall. Trans. A 20, 1811 (1989).CrossRefGoogle Scholar
  28. 28.
    S. S. Babu and H. K. D. H. Bhadeshia, Mater. Sci. Tech. Ser. 6, 1005 (1990).Google Scholar
  29. 29.
    H. K. D. H. Bhadeshia and J. W. Christian, Metall. Trans. A 21, 767 (1990).CrossRefGoogle Scholar
  30. 30.
    S. S. Babu and H. K. D. H. Bhadeshia, Mat. Sci. Eng. A-Struct. 156, 1 (1992).CrossRefGoogle Scholar
  31. 31.
    A.-F. Gourgues, H. M. Flower, and T. C. Lindley, Mater. Sci. Tech. Ser. 16, 26 (2000).CrossRefGoogle Scholar
  32. 32.
    G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, and R. Uemori, Scripta Mater. 48, 371 (2003).CrossRefGoogle Scholar
  33. 33.
    T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, and T. Maki, ISIJ Int. 43, 2028 (2003).CrossRefGoogle Scholar
  34. 34.
    J. M. Dowling, J. M. Corbett, and H. W. Kerr, Metall. Trans. A 17, 1611 (1986).CrossRefGoogle Scholar
  35. 35.
    T.-K. Lee, H. J. Kim, B. Y. Kang, and S. K. Hwang, ISIJ Int. 40, 1260 (2000).CrossRefGoogle Scholar
  36. 36.
    G. M. Evans, Weld. J. 71, 447s (1992).Google Scholar
  37. 37.
    S. St-Laurent and G. L’Espérance, Mat. Sci. Eng. A-Struct. 149, 203 (1992).CrossRefGoogle Scholar
  38. 38.
    Z. Zhang and R. A. Farrar, Mater. Sci. Tech. Ser. 12, 237 (1996).Google Scholar
  39. 39.
    K.-T. Park, S. W. Hwang, J. H. Ji, and C. H. Lee, Met. Mater. Int. 17, 349 (2011).CrossRefGoogle Scholar
  40. 40.
    J. H. Park and Y.-B. Kang, Metall. Mater. Trans. B 37, 791 (2006).CrossRefGoogle Scholar
  41. 41.
    J. H. Park, Mat. Sci. Eng. A-Struct. 472, 43 (2008).CrossRefGoogle Scholar
  42. 42.
    J. H. Park, S.-B. Lee, and H. R. Gaye, Metall. Mater. Trans. B 39, 853 (2008).CrossRefGoogle Scholar
  43. 43.
    J. H. Park and H. Todoroki, ISIJ Int. 50, 1333 (2010).CrossRefGoogle Scholar
  44. 44.
    S.-H. Jeon, S.-T. Kim, I.-S. Lee, J.-H. Park, K.-T. Kim, J.-S. Kim, and Y.-S. Park, Corros. Sci. 53, 1408 (2011).CrossRefGoogle Scholar
  45. 45.
    J. H. Park, CALPHAD 35, 455 (2011).CrossRefGoogle Scholar
  46. 46.
    J. S. Park, C. Lee, and J. H. Park, Metall. Mater. Trans. B 43, 1550 (2012).CrossRefGoogle Scholar
  47. 47.
    H. S. Kim, H.-G. Lee, and K.-S. Oh, Metall. Mater. Trans. A 32, 1519 (2001).CrossRefGoogle Scholar
  48. 48.
    D.-H. Woo, Y.-B. Kang, H. Gaye, and H.-G. Lee, ISIJ Int. 49, 1490 (2009).CrossRefGoogle Scholar
  49. 49.
    S. S. Babu, S. A. David, and T. Debroy, Sci. Technol. Weld. Joi. 1, 17 (1996).Google Scholar
  50. 50.
    W. Zhang, C.-H. Kim, and T. Debroy, J. Appl. Phys. 95, 5210 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yongjoon Kang
    • 1
  • Jihun Jang
    • 1
  • Joo Hyun Park
    • 2
  • Changhee Lee
    • 1
    Email author
  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Materials EngineeringHanyang UniversityAnsanKorea

Personalised recommendations