Metals and Materials International

, Volume 20, Issue 1, pp 27–34 | Cite as

Temperature effect on twin formation kinetics and deformation behavior of Fe-18Mn-0.6C TWIP steel

  • Joong Eun Jung
  • Junho Park
  • Jung-Su Kim
  • Jong Bae Jeon
  • Sung Kyu Kim
  • Young Won ChangEmail author


Temperature effect on deformation behavior has been investigated in relation to formation kinetics of twins in a Fe-18Mn-0.6C TWIP steel. Total elongation was found to reach a maximum value of 88% at 200 °C and then decreased continuously with the increase in test temperature from 300 °C up to 600 °C. This reversed temperature dependence on ductility could be attributed to the formation kinetics of deformation twins, as was prescribed by an internal variable theory of inelastic deformation. It was found that twins became more difficult to form at higher temperatures due to insufficient internal strain energy accumulated to reduce ductility progressively in this temperature range. Dislocation glide mechanism became, however, dominant at higher temperatures above 600 °C to increase total elongation following the usual temperature dependence. Finally the stacking fault energy was related with the stability parameter, β, used in the transformation kinetics relation.

Key words

TWIP twinning twin formation kinetics stacking fault energy deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Hadfield, Metallurgy and Its Influence on Modern Progress, p.91, Chapman and Hall Ltd., London (1925).Google Scholar
  2. 2.
    Y. G. Kim, T. W. Kim, and S. B. Hong, Proc. of ISATA Conference, p.269, Aachen, Germany (1993).Google Scholar
  3. 3.
    D. Cornette, P. Cugy, A. Hildenbrand, M. Bouzekri, and G. Lovato, Rev. Métall. 12, 905 (2005).CrossRefGoogle Scholar
  4. 4.
    S. K. Kim, J. Choi, S. C. Kang, I. R. Shon, and K. G. Chin, POSCO Tech. Report 9, 108 (2006).Google Scholar
  5. 5.
    J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim, and K. H. Song, J. Kor. Inst. Met. & Mater. 46, 627 (2008).Google Scholar
  6. 6.
    C. Y. Kang and T. Y. Hur, Korean J. Met. Mater. 50, 413 (2012).CrossRefGoogle Scholar
  7. 7.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009).CrossRefGoogle Scholar
  8. 8.
    K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Y Choi, and C. S. Lee, Mater. Sci. Eng. A 527, 3651 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Koyama, T. Sawaguchi, T. K. Lee, C. S. Lee, and K. Tsuzaki, Mater. Sci. Eng. A 528, 7310 (2011).CrossRefGoogle Scholar
  10. 10.
    L. Remy and A. Pineau, Mater. Sci. Eng. A 36, 47 (1978).CrossRefGoogle Scholar
  11. 11.
    S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389, 158 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Soulami, K. S. Choi, Y. F. Shen, W. N. Liu, X. Sun, and M. A. Khaleel, Mater. Sci. Eng. A 528, 402 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K. G. Chin, S. K. Kim, and B. C. De Cooman, Metall. Mater. Trans. A 43, 479 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Angel, J. Iron and Steel Inst. 177, 165 (1954).Google Scholar
  15. 15.
    D. C. Ludwigson and J. A. Berger, J. Iron and Steel Inst. 207, 63 (1969).Google Scholar
  16. 16.
    G. B. Olson and M. Azrin, Met. Trans. A 9, 713 (1978).CrossRefGoogle Scholar
  17. 17.
    L. Remy and A. Pineau, Mater. Sci. Eng. A 26, 123 (1976).CrossRefGoogle Scholar
  18. 18.
    Y. S. Jung, Y. K. Lee, D. K. Matlock, and M. C. Mataya, Met. Mater. Int. 17, 553 (2011).CrossRefGoogle Scholar
  19. 19.
    K. H. Kwon, J. S. Jeong, J. K. Choi, Y. M. Koo, Y. Tomota, and N. J. Kim, Met. Mater. Int. 18, 751 (2012).CrossRefGoogle Scholar
  20. 20.
    V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, Trans. Am. Soc. Met. 60, 252 (1967).Google Scholar
  21. 21.
    O. Matsumura, Y. Sakuma, and H. Takechi, Scripta Mater. 21, 1301 (1987).Google Scholar
  22. 22.
    H. C. Chen, H. Era, and M. Shimizu, Met. Trans. A 20, 437 (1987).CrossRefGoogle Scholar
  23. 23.
    Y. Sakuma, D. K. Matlock, and G. Krauss, J. Heat Treat. 8, 109 (1990).CrossRefGoogle Scholar
  24. 24.
    Y. Sakuma, O. Matsumura, and H. Takechi, Met. Trans. A 22, 489 (1991).CrossRefGoogle Scholar
  25. 25.
    T. K. Ha and Y. W. Chang, Acta Mater. 46, 2741 (1998).CrossRefGoogle Scholar
  26. 26.
    J. H. Chung and Y.W. Chang, Tetsu-to-Hagane 79, 665 (1993).Google Scholar
  27. 27.
    H. C. Shin, T. K. Ha, and Y. W. Chang, Scripta Mater. 45, 823 (2001).CrossRefGoogle Scholar
  28. 28.
    J. H. Chung, J. B. Jeon, and Y. W. Chang, Met. Mater. Int. 16, 533 (2010).CrossRefGoogle Scholar
  29. 29.
    M. G. Lee and S. J. Kim, Met. Mater. Int. 18, 425 (2012).CrossRefGoogle Scholar
  30. 30.
    H. C. Choi, T. K. Ha, H. C. Shin, and Y. W. Chang, Scripta Mater. 40, 1171 (1999).CrossRefGoogle Scholar
  31. 31.
    J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um, and Y. W. Chang, Met. Mater. Int. (doi: 10.1007/s12540-014-1010-4) (2013).Google Scholar
  32. 32.
    J. B. Seol, J. E. Jung, Y. W. Chang, and C. G. Park, Acta Mater. 61 558 (2013).CrossRefGoogle Scholar
  33. 33.
    L. Remy, Acta Metall. 26, 443 (1978).CrossRefGoogle Scholar
  34. 34.
    S. A. Saltykov, Proc. 2nd Int. Cong. for Stereology, p.63, Springer-Verlag, New York (1967).Google Scholar
  35. 35.
    T. H. Lee, E. J. Shin, C. S. Oh, H. Y. Ha, and S. J. Kim, Acta Mater. 58, 3173 (2010).CrossRefGoogle Scholar
  36. 36.
    S. Krishnamurthy, K-W Qian, R. E. Reed-Hill, Practical Applications of Quantitative Metallography, p.41, ASTMSTP 839, Philadelphia (1984).CrossRefGoogle Scholar
  37. 37.
    T. C. Tisone, Acta Metall. 21, 229 (1973).CrossRefGoogle Scholar
  38. 38.
    J. A. Venables, Deformation Twinning, p.77, Gordon and Breach, New York (1964).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Joong Eun Jung
    • 1
  • Junho Park
    • 2
  • Jung-Su Kim
    • 1
  • Jong Bae Jeon
    • 3
  • Sung Kyu Kim
    • 4
  • Young Won Chang
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringPOSTECHGyeongbukKorea
  2. 2.Steelmaking Research GroupPOSCO Technical Research LaboratoriesJeonnamKorea
  3. 3.Department of Structure and Nano-/Micromechanics of MaterialsMax-Planck-Institut fr EisenforschungDsseldorfGermany
  4. 4.TWIP Project TeamPOSCO Technical Research LaboratoriesJeonnamKorea

Personalised recommendations