Metals and Materials International

, Volume 19, Issue 5, pp 1083–1090 | Cite as

Stencil printing behavior of lead-free Sn-3Ag-0.5Cu solder paste for wafer level bumping for Sub-100 μm size solder bumps

  • Santosh Kumar
  • Sabuj Mallik
  • Ndy Ekere
  • Jaepil Jung


Stencil printing for flip chip packaging using fine particle solder pastes is a low cost assembly solution with high throughput for fine pitch solder joint interconnects. The manufacturing challenges associated with both solder paste printing increases as electronic device size decreases due to trend of miniaturization in electronic components. Among multiple parameters, the two most important stencil printing parameters are squeegee pressure and printing speed. In this paper, the printing behavior of Pb free Sn-3Ag-0.5Cu solder paste with a particle size distribution of 2–12 μm for wafer level bumping using a stencil printing method (stencil opening dimension −30 μm) was evaluated by varying the printing speed and squeegee pressure to fabricate solder bumps with a sub 100 μm size. The optimal squeegee pressure and print speed for the defect free printing behavior and fairly uniform size distribution of reflowed paste were found to be 7 kgf and 20 mm/s, respectively. The average size of the reflowed printed paste decreased with the increasing squeegee pressure.

Key words

alloy electronic materials bonding soldering scanning electron microscopy (SEM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. R. Kim, S. C. Hong, and J. P. Jung, Korean J. Met. Mater. 49, 388 (2011).Google Scholar
  2. 2.
    S. C. Hong, D. H. Jung, J. P. Jung, and W. J. Kim, Korean J. Met. Mater. 50, 152 (2012)Google Scholar
  3. 3.
    E. Suhir, Microelectronics J. 31, 839 (2000).CrossRefGoogle Scholar
  4. 4.
    E. H. Amalu, W. K. Lau, N. N. Ekere, R. S. Bhatti, S. Mallik, K. C. Otiaba, and G. Takyi, Microelectron. Eng. 88, 1610 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Winkler, Advanced IC Packaging Markets and Trends, 2nd ed., pp.1–3, Electronic Trend Publication, California (1998).Google Scholar
  6. 6.
    R. R. Tummala, Fundamentals of Microsystems Packaging, 1st ed., pp.403–404, McGraw-Hill Professional, New York (2001).Google Scholar
  7. 7.
    R. Schuetz, Proc. of Micro Systems Technologies (MST03), p.161, Munich (2003).Google Scholar
  8. 8.
    B. Huang and N. C. Lee, Proc. IEEE Transaction on Technol. Symp., p.1, IEMT, SEMICON, San Jose (2002).Google Scholar
  9. 9.
    T. A. Nguty, B. Salam, R. Durairaj, and N. N Ekere, IEEE Trans. Elect. Pack. Manufac. 24, 249 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Elenius, J. Leal, J. Ney, D. Stepniak, and S. Yeh, Proc. 49th ECTC, p.260 IEEE, San Diego (1999).Google Scholar
  11. 11.
    S. Nangalia, P. Deane, S. Bonafede, A. Huffman, C. Statler, and C. L. Rinne, Proc. Int Symp on Advanced Pkg. Mat., p.118, IEEE, Georgia (2000).Google Scholar
  12. 12.
    S. Aravamudhan, D. Santos, G. P. V. Diep, and F. Andres, Proc. IEEE Transaction on Technol. Symp., p.159, IEMT, SEMICON, San Jose (2002).Google Scholar
  13. 13.
    J. R. Morris and T. Wojcik, IEEE Trans. on Components, Hybrids, and Manufacturing Technology. 14, 560 (1991).CrossRefGoogle Scholar
  14. 14.
    R. W. Kay, E. de Gourcuff, M. P. Y. Desmulliez, G. J. Jackson, H. A. H. Steen, C. Liu, and P.P. Conway, Proc. 55th ECTC, p.848, IEEE, Lake Buena Vista (2005).Google Scholar
  15. 15.
    G. J. Jackson, M. W. Hendriksen, R. W. Kay, M. Desmulliez, R. K. Durairaj, and N. N. Ekere, Soldering & Surface Mount Technol. 17, 24 (2005).CrossRefGoogle Scholar
  16. 16.
    D. Manessis, R. Patzelt, A. Ostmann, R. Aschenbrenner, and H. Reichl, Microelectron. Reliab. 44, 797 (2004).CrossRefGoogle Scholar
  17. 17.
    I. Haslehurst and N. N. Ekere, J. of Electron. Manuf. 6, 307 (1996).CrossRefGoogle Scholar
  18. 18.
    J. S. Hwang, Solder Paste in Electronics Packaging, p.169, Van Nostrand Reinhold, New York (1989).CrossRefGoogle Scholar
  19. 19.
    M. Xiao, K. J. Lawless, and N. C. Lee, Soldering & Surface Mount Tech. 15, 4 (1993).CrossRefGoogle Scholar
  20. 20.
    T. Wilson and D. Bloomfield, Electron. Prod. 1, 39 (1995).Google Scholar
  21. 21.
    T. Wilson and D. Bloomfield, Electron. Prod. 2, 83 (1995).Google Scholar
  22. 22.
    S. H. Mannan, N. N. Ekere, N. I. Ismail, and E. K. Lo, IEEE Trans. Comp. Hybrids, Manufact. Technol. 17, 470 (1994).CrossRefGoogle Scholar
  23. 23.
    J. Pan and G. L. Tonkay, R. H. Storer, R. M. Sallade, D. J. Leandri, IEEE Trans. Elect. Pack. Mfg, 27, 125 (2004).CrossRefGoogle Scholar
  24. 24.
    J. Pan and G. L. Tonkay, Proc. ASME Int. Mech. Eng. Congr. Expo., p.75, Electron. Manufact. Issues, Nashville, USA (1999).Google Scholar
  25. 25.
    JEDEC Standard, J-STD-005 (1995).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Santosh Kumar
    • 1
  • Sabuj Mallik
    • 2
  • Ndy Ekere
    • 2
  • Jaepil Jung
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulKorea
  2. 2.School of EngineeringUniversity of GreenwichLondonUK

Personalised recommendations