Metals and Materials International

, Volume 19, Issue 5, pp 1029–1034 | Cite as

Sintering and microstructure characteristics of 42CrMo4 steel processed by spark plasma sintering

  • Ridvan YamanogluEmail author
  • William Bradbury
  • Eugene A. Olevsky
  • Randall M. German


Rapidly solidified micron sized 42CrMo4 steel powder with a size range of 150–250 μm produced by plasma rotating electrode process was consolidated using a recently developed spark plasma sintering (SPS) process. The relationship between sintering parameters (temperature and soaking time) and microstructural properties was investigated. The effect of slow and high heating regimes on the consolidation of sintered compacts has been also investigated. Maximum relative density (99.2%) was obtained at 1000 °C, under 50 MPa pressure, with 8 min holding time and 200 °C/min heating rate. The microstructure of sintered steel was influenced by carburization occuring inside the graphite SPS process die. The diffusion of carbon produced martensite structure near the surface region and hardened the surface. This effect was investigated in detail using optical microscopy and hardness measurement. Scanning electrone microscopy was also used to examine the fracture surface of sintered compacts. High heating rate promoted the relative density at low temperature compared to high temperature.

Key words

metals powder processing microstructure SEM spark plasma sintering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. H. Zhang, F. C. Wang, S. K. Lee, Y. Liu, J. W. Cheng, and Y. Liang, Mater. Sci. Eng. A-Struct. 523, 134 (2009).CrossRefGoogle Scholar
  2. 2.
    B. Li, Y. Liu, J. Li, H. Cao, and L. He, J. Mater. Process Tech. 210, 91 (2010).CrossRefGoogle Scholar
  3. 3.
    H. Feng, Y. Zhou, D. Jia, and Q. Meng, Mater. Sci. Eng. AStruct. 390, 344 (2005).CrossRefGoogle Scholar
  4. 4.
    K. Biswas, A. Mukhopadhyay, B. Basu, and K. Chattopadhyay, J. Mater. Res. 22, 1491 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Yao, Z. Huang, L. Chen, D. Jiang, S. Tan, D. Michel, G. Wang, L. Mazerolles, and J. L. Pastol, Mater. Lett. 59, 2314 (2005).CrossRefGoogle Scholar
  6. 6.
    H. Ke, L. Xiao-qiang, Y. Chao, and L. Yuan-yuan, T. Nonferr. Metal. Soc. 21, 493 (2011).CrossRefGoogle Scholar
  7. 7.
    O. Z. Lozynskyy, M. Herrmann, and A. Ragulya, J. Eur. Ceram. Soc. 31, 809 (2011).CrossRefGoogle Scholar
  8. 8.
    F. C. Sahin, H. E. Kanbur, and B. Apak, J. Eur. Ceram. Soc. 32, 925 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. S. Zhang, X. M. Zhang, X. F. Bai, P. Tan, F. C. Dong, Z. K. Li, and Z. T. Yu, Int. J. Refract. Met. H. 30, 1 (2012).CrossRefGoogle Scholar
  10. 10.
    X. H. Tian, J. H. Sui, X. Zhang, X. H. Zheng, and W. Cai, J. Alloy Compd. 514, 210 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Dash, B. C. Ray, and D. Chaira, J. Alloy Compd. 516, 78 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Li, Y. Wang, and B. Han, Opt. Laser Eng. 49, 530 (2011).CrossRefGoogle Scholar
  13. 13.
    D. Chaouch, S. Guessasma, and A. Sadok, Mater. Design. 34, 679 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Miokovic, V. Schulze, O. Vöhringer, and D. Löhe, Acta Mater. 55, 589 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Totik, Surf. Coat. Tech. 20, 2711 (2006).CrossRefGoogle Scholar
  16. 16.
    P. B. Srinivasan, C. V. Krishnakumar, and N. Krishnaraj, J. Mater. Eng. Perform. 11, 509 (2002).CrossRefGoogle Scholar
  17. 17.
    B. Podgornik, J. Vizintin, O. Wanstrand, M. Larsson, and S. Hogmark, Surf. Coat. Tech. 120, 502 (1999).CrossRefGoogle Scholar
  18. 18.
    M. A. Terres, N. Laalai, and H. Sidhom, Mater. Design. 35, 741 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Totik, R. Sadeler, H. Altun, and M. Gavgali, Mater. Design. 24, 25 (2003).CrossRefGoogle Scholar
  20. 20.
    C. Ye, S. Suslov, B. J. Kim, E. A. Stach, and G. J. Cheng, Acta Mater. 59, 1014 (2011).CrossRefGoogle Scholar
  21. 21.
    D. Senthilkumar, I. Rajendran, M. Pellizaari, and J. Siiriainen, J. Mater. Process Tech. 211, 396 (2011).CrossRefGoogle Scholar
  22. 22.
    L. G. Yu, K. A. Khor, and G. Sundararajan, Surf. Coat. Tech. 157, 226 (2002).CrossRefGoogle Scholar
  23. 23.
    P. Kulai R. Pietrasik, and K. Dybowski, J. Mater. Process Tech. 164, 876 (2005).Google Scholar
  24. 24.
    S. A. J. Jahromi, A. Khajeh, and B. MAhmoudi, Mater. Design. 34, 857 (2012).CrossRefGoogle Scholar
  25. 25.
    M. A. Terres and H. Sidhom, Mater. Design. 33, 444 (2012).CrossRefGoogle Scholar
  26. 26.
    A. Abdollah-Zadeh, A. Salemi, and H. Assadi, Mater. Sci. Eng. A-Struct. 483, 325 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ridvan Yamanoglu
    • 1
    Email author
  • William Bradbury
    • 2
  • Eugene A. Olevsky
    • 2
  • Randall M. German
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringKocaeli UniversityKocaeliTurkey
  2. 2.Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA

Personalised recommendations