Advertisement

Metals and Materials International

, Volume 19, Issue 5, pp 1021–1027 | Cite as

Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method

  • Wenke Wang
  • Yuepeng Song
  • Dongsheng Gao
  • Eun Yoo Yoon
  • Dong Jun Lee
  • Chong Soo Lee
  • Hyoung Seop Kim
Article

Abstract

High pressure torsion (HPT) is useful for achieving substantial grain refinement to ultrafine grained/nanocrystalline states in bulk metallic solids. Most publications that analyzed the HPT process used experimental and numerical simulation approaches, whereas theoretical stress analyses for the HPT process are rare. Because of the key role of compression stage for the deformation of HPT, this paper aims to conduct a theoretical analysis and to establish a practical formula for stress and forming parameters of HPT process using the slab analysis method. Three equations were obtained via equations derivation to describe the normal stress states corresponding to the three zones of plastic deformation for HPT process as stick zone, drag zone and slip zone. As to the compression stage of HPT, the stress distribution results using the finite element method agree well with those using the slab analysis method. There are drag and stick zones on the contact surface of the HPT sample, as verified by the finite element method (FEM) and slab analysis method.

Key words

nanostructured materials severe plastic deformation interfaces computer simulation slab analysis method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Kim and Y. Estrin, Appl. Phys. Lett. 79, 4115 (2001).CrossRefGoogle Scholar
  2. 2.
    J. Liu, H. Cui, X. Zhou, X. Wu, and J. Zhang, Met. Mater. Int. 18, 121 (2012).CrossRefGoogle Scholar
  3. 3.
    H. S. Kim, C. Suryanarayana, and S. J. Kim, Powder Metall. 41, 217 (1998).Google Scholar
  4. 4.
    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, JOM. 58, 33 (2006).CrossRefGoogle Scholar
  5. 5.
    A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater. 47, 579 (1999).CrossRefGoogle Scholar
  7. 7.
    M. I. Latypov, I. V. Alexandrov, Y. E. Beygelzimer, S. Lee, and H. S. Kim, Comput. Mater. Sci. 60, 194 (2012).CrossRefGoogle Scholar
  8. 8.
    A. P. Zhilyaev, K. O. Ishi, T. G. Langdon, and T. R. McNelley, Mater. Sci. Eng. A 410–411, 277 (2005).Google Scholar
  9. 9.
    K. Edalati, T. Fujioka, and Z. Horita, Mater. Sci. Eng. A 497, 168 (2008).CrossRefGoogle Scholar
  10. 10.
    R. B. Figueiredo, M. T. Aguilar, C. PauloR, and T. G. Langdon, Metall. Mater. Trans. A 42, 3013 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Hohenwarter, A. Bachmaier, B. Gludovatz, S. Scheriau, and R. Pippan, Int. J. Mater. Res. 100, 1653 (2009).CrossRefGoogle Scholar
  12. 12.
    G. Y. Tzou, H. H. Hsu, and Y. H. Hsiao, J. Mater. Proc. Tech. 177, 150 (2006).CrossRefGoogle Scholar
  13. 13.
    L. Huang, H. Yang, M. Zhan, and Y. L. Li, J. Mater. Proc. Tech. 201, 267 (2008).CrossRefGoogle Scholar
  14. 14.
    D. W. Zhang, H. Yang, and Z. C. Sun, J. Mater. Proc. Tech. 210, 258 (2010).CrossRefGoogle Scholar
  15. 15.
    X. C. Tan, Tribolo. Int. 35, 385 (2002).CrossRefGoogle Scholar
  16. 16.
    N. Bay and G. Gerved, J. Mechan. Working Tech. 14, 263 (1987).CrossRefGoogle Scholar
  17. 17.
    D. R. Hayhurst and M. W. Chan, Int. J. Mechan. Sci. 47, 1 (2005).CrossRefGoogle Scholar
  18. 18.
    Y. P. Song, W. K. Wang, D. S. Gao, E. Y. Yoon, D. J. Lee, C. S. Lee, and H. S. Kim, J. Mater. Sci. 48, 4698 (2013).CrossRefGoogle Scholar
  19. 19.
    B. Roberto, P. Henrique, M. Teresa, R. Paulo, and T. G. Terence, Acta Mater. 60, 3190 (2012).CrossRefGoogle Scholar
  20. 20.
    S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Proc. Tech. 201, 32 (2008).CrossRefGoogle Scholar
  21. 21.
    T. Hebesberger, H. P. Stuwe, A. Vorhauer, F. Wetscher, and R. Pippan, Acta Mater. 53, 393 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Cao, Y. B. Wang, S. N. Alhajeri, X. Z. Liao, W. L. Zheng, S. P. Ringer, T. G. Langdon, and Y. T. Zhu, Mater. Sci. 45, 765 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Vorhauer and R. Pippan, Scripta Mater. 51, 921 (2004).CrossRefGoogle Scholar
  24. 24.
    Y. P. Song, E. Y. Yoon, D. J. Lee, J. H. Lee, and H. S. Kim, Mater. Sci. Eng. A 13–14, 4840 (2011).Google Scholar
  25. 25.
    H. S. Kim, J. Mater. Proc. Tech. 113, 617 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wenke Wang
    • 1
    • 2
    • 3
  • Yuepeng Song
    • 1
    • 2
    • 3
  • Dongsheng Gao
    • 3
  • Eun Yoo Yoon
    • 2
  • Dong Jun Lee
    • 2
  • Chong Soo Lee
    • 2
  • Hyoung Seop Kim
    • 2
  1. 1.Mechanical and Electronic Engineering CollegeShandong Agricultural UniversityTai’anChina
  2. 2.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  3. 3.Shandong Provincial Key Laboratory of Horticultural Machineries and EquipmentsShandong Agricultural UniversityTai’anChina

Personalised recommendations