Metals and Materials International

, Volume 19, Issue 5, pp 927–932 | Cite as

Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion

  • Eun Yoo Yoon
  • Dong Jun Lee
  • Byungho Park
  • M. R. Akbarpour
  • M. Farvizi
  • Hyoung Seop KimEmail author


In recent years, the processing of metallic materials via severe plastic deformation has been widely applied to manufacture bulk specimens of ultrafine grained/nanocrystalline structures. In this study, bulk nanocomposites of carbon nanotube-reinforced Cu were manufactured by consolidation of mixtures of coarse grained Cu powders and CNTs of two volume fractions (5 vol% and 10 vol%) using high-pressure torsion, a typical SPD method. The effects of CNT reinforcements on the microstructural evolution of the Cu matrix were investigated using electron backscatter diffraction and scanning/transmission electron microscopy; the results showed that the Cu matrix grain size was reduced to ∼114 nm, and the CNTs were well dispersed in the matrix. Due to the effect of the UFG Cu and CNTs, the tensile strength (350 MPa) of the nanocomposite was higher than that (190 MPa) of Cu processed by the powder HPT process without CNTs. However, the Cu-CNT 10 vol% indicated a decreased tensile strength due to an increased interface area between the matrix and CNTs at high volume fractions of CNTs.

Key words

composites severe plastic deformation grain refinement electron back scattering diffraction (EBSD) scanning/transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).CrossRefGoogle Scholar
  2. 2.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  3. 3.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).CrossRefGoogle Scholar
  4. 4.
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).CrossRefGoogle Scholar
  5. 5.
    A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, Nat. Mater. 1, 190 (2002).CrossRefGoogle Scholar
  6. 6.
    E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Y. Song, Y. J. Kwak, B. -S. Lee, H. R. Park, and B. -G. Kim, Korean J. Met. Mater. 49, 989 (2011).CrossRefGoogle Scholar
  8. 8.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
  9. 9.
    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, JOM 58, 33 (2006).CrossRefGoogle Scholar
  10. 10.
    Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, J. Mater. Res. 11, 1880 (1996).CrossRefGoogle Scholar
  11. 11.
    A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
  12. 12.
    A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar, and T. G. Langdon, Acta Mater. 51, 753 (2003).CrossRefGoogle Scholar
  13. 13.
    V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, and R. Z. Valiev, Mater. Sci. Eng. A 282, 78 (2000).CrossRefGoogle Scholar
  14. 14.
    I. V. Alexandrov, K. Zhang, A. R. Kilmametov, K. Lu, and R. Z. Valiev, Mater. Sci. Eng. A 234-236, 331 (1997).CrossRefGoogle Scholar
  15. 15.
    E. Y. Gutmanas, Prog. Mater. Sci. 34, 261 (1990).CrossRefGoogle Scholar
  16. 16.
    T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita, Scripta Mater. 58, 735 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Li, A. Misra, Y. Zhu, Z. Horita, C. C. Koch, and T. G. Holesinger, Mater. Sci. Eng. A 523, 60 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Li, A. Misra, Z. Horita, C. C. Koch, N. A. Mara, P. O. Dickerson, and Y. Zhu, Appl. Phys. Lett. 95, (2009).Google Scholar
  19. 19.
    S. H. Joo, S. C. Yoon, C. S. Lee, D. H. Nam, S. H. Hong, and H. S. Kim, J. Mater. Sci. 45, 4652 (2010).CrossRefGoogle Scholar
  20. 20.
    Y. Estrin, Dislocation-Density-Related Constitutive Modeling, in Unified Constitutive Laws of Plastic Deformation, pp. 69–106, Academic Press, New York (1996).CrossRefGoogle Scholar
  21. 21.
    DEFORM Software, Scientific Forming Technologies Corp., Columbus, OH (2007).Google Scholar
  22. 22.
    R. B. Figueiredo, P. R. Cetlin, and T. G. Langdon, Mater. Sci. Eng. A 528, 8198 (2011).CrossRefGoogle Scholar
  23. 23.
    D. J. Lee, E. Y. Yoon, L. J. Park, and H. S. Kim, Scripta Mater. 67, 384 (2012).CrossRefGoogle Scholar
  24. 24.
    X. H. An, S. D. Wu, Z. F. Zhang, R. B. Figueiredo, N. Gao, and T. G. Langdon, Scripta Mater. 63, 560 (2010).CrossRefGoogle Scholar
  25. 25.
    Z. Horita and T. G. Langdon, Mater. Sci. Eng. A 410–411, 422 (2005).Google Scholar
  26. 26.
    N. Lugo, N. Llorca, J. M. Cabrera, and Z. Horita, Mater. Sci. Eng. A 477, 366 (2008).CrossRefGoogle Scholar
  27. 27.
    E. Y. Yoon, D. J. Lee, D. H. Ahn, E. S. Lee, and H. S. Kim, J. Mater. Sci. 47, 7770 (2012).CrossRefGoogle Scholar
  28. 28.
    T. Tokunaga, K. Kaneko, and Z. Horita, Mater. Sci. Eng. A 490, 300 (2008).CrossRefGoogle Scholar
  29. 29.
    P. Jenei, E. Y. Yoon, J. Gubicza, H. S. Kim, J. L. Lábár, and T. Ungár, Mater. Sci. Eng. A 528, 4690 (2011).CrossRefGoogle Scholar
  30. 30.
    D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Imaging, Plenum Press (1996).CrossRefGoogle Scholar
  31. 31.
    Y. Feng, H. L. Yuan, and M. Zhang, Mater. Charact. 55, 211 (2005).CrossRefGoogle Scholar
  32. 32.
    S. M. L. Nai, J. Wei, and M. Gupta, Mater. Sci. Eng. A 423, 166 (2006).CrossRefGoogle Scholar
  33. 33.
    S. R. Dong, J. P. Tu, and X. B. Zhang, Mater. Sci. Eng. A 313, 83 (2001).CrossRefGoogle Scholar
  34. 34.
    K. T. Kim, S. I. Cha, and S. H. Hong, Mater. Sci. Eng. A 430, 27 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eun Yoo Yoon
    • 1
    • 2
  • Dong Jun Lee
    • 3
  • Byungho Park
    • 3
  • M. R. Akbarpour
    • 4
  • M. Farvizi
    • 4
  • Hyoung Seop Kim
    • 1
    • 3
    Email author
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.Light Metal Division, Materials Deformation DepartmentKorea Institute of Materials Science (KIMS)ChangwonKorea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea
  4. 4.Materials and Energy Research Center (MERC)TehranIran

Personalised recommendations