Metals and Materials International

, Volume 19, Issue 4, pp 835–844 | Cite as

Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

  • Chih-Chun Hsieh
  • Chien-Hong Lai
  • Weite WuEmail author


This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young’s modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young’s modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

Key words

metals welding mechanical properties X-ray diffraction microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Chen, Structural Strength of Welding, 1st ed., p.200, Fu-Wen Book Company, Taiwan (1995).Google Scholar
  2. 2.
    H. S. Chou, Weld. Cutt. 2, 83 (1992).Google Scholar
  3. 3.
    Y. C. Lin, Mech. Techno. 48, 48 (1989).Google Scholar
  4. 4.
    E. Enke, Maschinenmarkt 48, 37 (1955).Google Scholar
  5. 5.
    A. G. Hebel, Jr., Metal Process. 128, 51 (1985).Google Scholar
  6. 6.
    C. A. Walker, A. J. Waddell, and D. J. Johnston, Process Inst. Mech. Eng. 209, 51 (1995).CrossRefGoogle Scholar
  7. 7.
    Meta-Lax, Meta-Lax Stress Relief Procedure, 1st ed., pp.1–120, Bonal Technologies, Inc., Royal Oak, Michigan (1997).Google Scholar
  8. 8.
    I. K. Lokshin, Dimensional Stabilization of Casting, 1st ed., pp.1–35, Russian Castings Production, Russia (1965).Google Scholar
  9. 9.
    C. A. Walker, A. J. Waddell, and D. J. Johnston, Process Inst. Mech. Eng. 209, 65 (1995).Google Scholar
  10. 10.
    R. Dawson and D. G. Moffat, J. Eng. Mater. Technol. 102, 169 (1980).CrossRefGoogle Scholar
  11. 11.
    M. C. Sun, Mater. Lett. 58, 299 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Rao, D. Wang, L. Chen, and C. Ni, Int. J. Fatigue 29, 192 (2007).CrossRefGoogle Scholar
  13. 13.
    C. W. Kuo, C. M. Lin, G. H. Lai, Y. C. Chen, Y. T. Chang, and W. Wu, Mater. Trans. 48, 2319 (2007).CrossRefGoogle Scholar
  14. 14.
    C. W. Kuo, M. C. Chen, J. H. Chen, G. H. Lai, Y. T. Chang, Y. C. Chen, and W. Wu, Mater. Trans. 48, 2316 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Weiss, S. Baker, and R. D. Das Gupta, Weld. J. 55, 47 (1976).Google Scholar
  16. 16.
    Q. Lu, L. Chen, and C. Ni, Mater. Sci. Eng. A 457, 246 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Wei, Acta Metall. 40, 2739 (1992).CrossRefGoogle Scholar
  18. 18.
    C. W. Kuo, Ph. D. Thesis, pp.1–80, National Chung Hsing University, Taiwan (2008).Google Scholar
  19. 19.
    N. Suutala, T. Takalo, and T. Moisio, Metall. Mater. Trans. A 11, 717 (1980).CrossRefGoogle Scholar
  20. 20.
    H. P. Chou, Mech. J. 18, 155 (1992).Google Scholar
  21. 21.
    C. M. Wang, Materials Analysis, 1st ed., pp.1–230, Materials Research Society, Taiwan (1998).Google Scholar
  22. 22.
    E. Beraha and B. Shpigler, Color Metallography, 1st ed., pp.1–58, American Society for Metals, Metals Park, Ohio (1977).Google Scholar
  23. 23.
    M. E. Hilley, J. A. Larson, C. F. Jatczak, and R. E. Richlefs, Residual Stress Measurement by X-ray Diffraction, 1st ed., pp.1–30, SAE Information Report, Warrendate, Pennsylvania (1971).Google Scholar
  24. 24.
    G. F. Vander Voort, Metallography: Principles and Practice, 1st ed., pp.1–155, McGraw-Hill Book Co., New York, (1984).Google Scholar
  25. 25.
    D. Y. Lin, G. L. Liu, T. C. Chang, and H. C. Hsieh, J. Alloys Compd. 377, 150 (2004).CrossRefGoogle Scholar
  26. 26.
    S. E. Hsu and T. P. Wu, X-Ray Diffraction Principles and Materials Structural Analysis, 1st ed., pp.1–235, Materials Research Society Taiwan (1992).Google Scholar
  27. 27.
    G. P. Wonzney and G. R. Crawmer, Weld. J. 47, 411 (1968).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations