Advertisement

Metals and Materials International

, Volume 19, Issue 4, pp 697–705 | Cite as

Prediction of fracture forming limit for DP780 steel sheet

  • Yanshan Lou
  • Sung Jun Lim
  • Hoon Huh
Article

Abstract

This paper is concerned with modeling of fracture strains of DP780 using a newly proposed micro-mechanism-motivated ductile fracture criterion (Lou et al., 2012) and its application to predict limit dome heights (LDH) for nine hemispherical punch-stretch tests. Dog-bone specimens are tested to characterize strain hardening behavior. Five arc-shaped specimens and four square-shaped specimens are drawn until fracture to construct a fracture forming limit diagram (FFLD) using circle grid analysis. Fracture strains are approximated from constructed FFLD in uniaxial, plane strain and balanced biaxial tension. The approximated fracture strains are employed to calculate material constants of the proposed criterion as well as six conventional criteria. FFLDs predicted by these criteria are compared with experimental results. The comparison demonstrates that only the proposed criterion describes FFLD perfectly from uniaxial tension to balanced biaxial tension. All criteria are implemented into ABAQUS/Explicit to predict LDHs of punch-stretch tests. Numerical results indicate that LDHs are severely underestimated for the square-shaped specimens by conventional criteria while the proposed criterion predicts LDHs with good agreement for nine tests with strain paths between uniaxial tension and balanced biaxial tension. Thus, the proposed criterion is recommended to access formability from uniaxial tension to balanced biaxial tension.

Key words

metals drawing ductility fracture plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Cockcroft and D. J. Latham, J. Inst. Met. 96, 33 (1968).Google Scholar
  2. 2.
    J. R. Rice and D. M. Tracey, J. Mech. Phys. Solids 17, 201 (1969).CrossRefGoogle Scholar
  3. 3.
    P. Brozzo, B. DeLuca, and R. Rendina, Proc. 7th Bi. Conf. IDDRG, Amsterdam (1972).Google Scholar
  4. 4.
    S. I. Oh, C. C. Chen, and S. Kobayashi, Trans. ASME, J. Eng. Ind. 101, 36 (1979).CrossRefGoogle Scholar
  5. 5.
    M. Oyane, T. Sato, K. Okimoto, and S. Shima, J. Mech. Work. Technol. 4, 65 (1980).CrossRefGoogle Scholar
  6. 6.
    S. E. Clift, P. Hartley, C. E. N. Sturgess, and G. W. Rowe, Int. J. Mech. Sci. 32, 1 (1990).CrossRefGoogle Scholar
  7. 7.
    H. N. Han and K.-H. Kim, J. Mater. Process. Technol. 142, 231 (2003).CrossRefGoogle Scholar
  8. 8.
    Y. K. Ko, J. S. Lee, H. Huh, H. K. Kim, and S.-H. Park, J. Mater. Process. Technol. 187–188, 358 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Takuda, K. Mori, H. Fujimoto, and N. Hatta, J. Mater. Process. Technol. 60, 291 (1996).CrossRefGoogle Scholar
  10. 10.
    H. Takuda, K. Mori, and N. Hatta, J. Mater. Process. Technol. 95, 116 (1999).CrossRefGoogle Scholar
  11. 11.
    M. Jain, J. Allin, and D. J. Lloyd, Int. J. Mech. Sci. 41, 1273 (1999).CrossRefGoogle Scholar
  12. 12.
    L. P. Lei, B. S. Kang, and S. J. Kang, J. Mater. Process. Technol. 113, 673 (2001).CrossRefGoogle Scholar
  13. 13.
    C. L. Chow and M. Jie, Int. J. Mech. Sci. 46, 99 (2004).CrossRefGoogle Scholar
  14. 14.
    Y. B. Bao and T. Wierzbicki, J. Eng. Mater. Tech. ASME 126, 314 (2004).CrossRefGoogle Scholar
  15. 15.
    F. Ozturk and D. Y. Lee, J. Mater. Process. Technol. 147, 397 (2004).CrossRefGoogle Scholar
  16. 16.
    S.-T. Oh, H.-J. Chang, K.H. Oh, and H. N. Han, Met. Mater. Int. 12, 121 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Vallellano, D. Morales, and F. J. Garchi-Lomas, Mater. Manuf. Process. 23, 303 (2008).CrossRefGoogle Scholar
  18. 18.
    J. S. Chen, X. B. Zhou, and J. Chen, J. Mater. Process. Technol. 210, 315 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. S. Lou, H. Huh, S. J. Lim, and K. H. Pack, Int. J. Solids Struct. 49, 3605 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. S. Lou and H. Huh, Int. J. Solids Struct. 50, 447 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. S. Lou and H. Huh, J. Mater. Process. Technol. (2013) (doi: 10.1016/j.jmatprotec.2013.03.001.)Google Scholar
  22. 22.
    Y. S. Lou, and H. Huh, Int. J. Solids Struct. 50, 447 (2013).CrossRefGoogle Scholar
  23. 23.
    S. B. Kim, H. Huh, H. H. Bok, and M. B. Moon, J. Mater. Process. Technol. 211, 851, (2011).CrossRefGoogle Scholar
  24. 24.
    M. Luo and T. Wierzbicki, Int. J. Solids Struct. 47, 3084 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Mechanical, Aerospace and Systems EngineeringKAISTDaejeonKorea

Personalised recommendations