Advertisement

Metals and Materials International

, Volume 20, Issue 1, pp 77–81 | Cite as

Synthesis of nano-structured La0.8Ba0.2MnO3 perovskite via a mechano-thermal route

  • Zoya Sadighi
  • Abolghasem Ataie
  • Mohammad Reza Barati
Article

Abstract

In this study, barium-doped lanthanum manganite, La0.8Ba0.2MnO3, was synthesized via a mechano-thermal route employing high energy ball milling and subsequent heat treatment. The structural evolution, morphology and thermal behaviour of the powders were evaluated using XRD, FESEM, and DTA/TGA, respectively. DTA/TGA results showed that the calcination temperature of the carbonates significantly decreased by increasing the milling time. The results revealed that single phase perovskite was formed at 900 °C in a milled sample for 2 h and this temperature decreased to 600 °C by increasing the milling time to 30 h. The mean crystallite size also decreased from 32 to 20 nm by increasing the milling time from 2 to 30 h. The reaction sequence of La0.8Ba0.2MnO3 formation via the mechano-thermal route is proposed using XRD and DTA/TGA results. FESEM micrographs showed that the mean particle size of the perovskite phase is increased slightly from 30 to 40 nm by increasing the heat treatment temperature from 600 to 900 °C.

Key words

nanostructured materials mechanical milling microstructure X-ray diffraction thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi, and M. Oumezzine, Int. J. Nanoelectron. Mater. 3, 26 (2010).Google Scholar
  2. 2.
    H. L. Ju, Y. S. Nam, J. E. Lee, and H. S. Shin, J. Magn. Magn. Mater. 219, 1 (2000).CrossRefGoogle Scholar
  3. 3.
    E. Pollert, K. Knziek, M. Marysko, P. Kaspar, S. Vasseur, and E. Duguet, J. Magn. Magn. Mater. 316, 122 (2007).CrossRefGoogle Scholar
  4. 4.
    B. M. Nagabhushana, G. T. Chandrappa, R. P. Sreekanth Chakradhar, K. P. Ramesh, and C. Shivakumara, Solid State Commun. 136, 429 (2005).CrossRefGoogle Scholar
  5. 5.
    Ph. Van Cuong and D. Kim, J. Phys.: Con. Ser. 187, 012090 (2009).Google Scholar
  6. 6.
    H. S. Im, G. B. Chon, S. M. Lee, B. H. Koo, C. G. Lee, and M. H. Jung, J. Magn. Magn. Mater. 310, 2668 (2007).CrossRefGoogle Scholar
  7. 7.
    S. A. Solopan, O. I. Vyunov, and A. G. Belous, Ukr. Chem. J. 5, 19 (2010).Google Scholar
  8. 8.
    A. Ghosh, A. K. Sahu, A. K. Gulnar, and A. K. Suri, Scr. Mater. 52, 1307 (2005).CrossRefGoogle Scholar
  9. 9.
    S. S. Chen, C. P. Yang, Z. H. Zhou, D. H. Guo, H. Wang, and G. H. Rao, J. Alloys Compd. 463, 273 (2008).Google Scholar
  10. 10.
    B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey (2001).Google Scholar
  11. 11.
    J. Chaichanawong, K. Sato, and T. Fukui, Adv. Powder Technol. 17, 617 (2006).CrossRefGoogle Scholar
  12. 12.
    J. M. Porras Vazquez, L. Santos Gomez, I. Santacruz, M. A. G. Aranda, D. Marrero Lopez, and E. R. Losilla, Ceram. Int. 38, 3330 (2012).Google Scholar
  13. 13.
    L. S. Fan, Chemical Looping Systems for Fossil Energy Conversions, 1st ed., John Wiley & Sons, Inc., New Jersey (2010).CrossRefGoogle Scholar
  14. 14.
    H. Bahrami, P. Kameli, and H. Salamati, Solid State Commun. 149, 1952 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. C. Liou, Mater. Sci. Eng. B 108, 279 (2004).CrossRefGoogle Scholar
  16. 16.
    Y. S. Chou, J. W. Stevenson, T. R. Armstrong, and L. R. Pederson, J. Am. Ceram. Soc. 83, 1457 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Zoya Sadighi
    • 1
  • Abolghasem Ataie
    • 1
  • Mohammad Reza Barati
    • 2
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Materials EngineeringMonash UniversityClaytonAustralia

Personalised recommendations