Advertisement

Metals and Materials International

, Volume 20, Issue 1, pp 1–5 | Cite as

Thermal and mechanical properties of Cu60−xZr25Ti15Nix bulk metallic glasses with x=0, 1, 3, 5, 7, 9 and 11 at.%

  • M. W. Lee
  • H. J. Shin
  • S. H. Hong
  • J. T. Kim
  • H. Choi-Yim
  • Y. Seo
  • W. H. Lee
  • P. Yu
  • M. Qian
  • J. K. Lee
  • K. B. Kim
Article

Abstract

Systematic investigation on thermal and mechanical properties of Cu60−xZr25Ti15Nix bulk metallic glasses with x = 0, 1, 3, 5, 7, 9 and 11 at.% points out that monolithic Cu53Zr25Ti15Ni7 and Cu51Zr25Ti15Ni9 bulk metallic glasses containing optimum Ni content of 7 and 9 at.% are effective to enhance both thermal stability of amorphous structure up to 716 K and plastic strain of 2.4% at room temperature. This indicates that a selection of additional elements such as Ni by considering a mixing enthalpy to the constituent elements is very important to control the thermal stability and plasticity. Moreover, it is believed that the addition of minor Ni can be a trigger to form the chemical heterogeneity upon solidification. Such chemical heterogeneity formed by the selection of the minor elements has a strong influence to cause the oscillation of the shear stress by wavy propagation of the shear bands thus leading the improvement of macroscopic plasticity of the bulk metallic glasses.

Key words

amorphous materials precipitation mechanical properties thermal analysis plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Egami, Proc. Amorphous Metallic Alloys. & Processing (eds. F. E. Luborsky), p. 100, Butter worths, London (1983).Google Scholar
  2. 2.
    H. A. Bruck, A. J. Rosakis, and W. L. Johnson, J. Mater. Res. 11, 503 (1996).CrossRefGoogle Scholar
  3. 3.
    C. G. Gilbert, R. O. Ritchie, and W. L. Johnson, Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
  4. 4.
    D. Conner, A. J. Rosakis, and W. L. Johnson, Scripta Metall. Mater. 37, 1373 (1997).Google Scholar
  5. 5.
    F. Spaepen, Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
  6. 6.
    A. L. Greer, Science 267, 1947 (1995).CrossRefGoogle Scholar
  7. 7.
    W. L. Johnson, MRS Bull. 24, 42 (1999).Google Scholar
  8. 8.
    W. L. Johnson and K. Samwer, Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
  9. 9.
    J. J. Lewandowski, W. H. Wang, and A. L. Greer, Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Inoue, W. Zhang, and T. Tsurui, Phil. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
  11. 11.
    C. Fan, R. T. Ott, and T. C. Hunfnagel, Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
  12. 12.
    U. Khn, J. Eckert, N. Mattern, and L. Schultz, Appl. Phys. Lett. 80, 2478 (2002).CrossRefGoogle Scholar
  13. 13.
    W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R44, 45 (2004).Google Scholar
  14. 14.
    J. J. Lee, K. W. Park, D. H. Kim, and E. Fleury, Korean J. Met. Mater. 49, 930 (2011).Google Scholar
  15. 15.
    K. B. Kim, J. Das, S. Venkataraman, and J. Eckert, Appl. Phys. Lett. 89, 071908 (2006).CrossRefGoogle Scholar
  16. 16.
    K. B. Kim, J. Das, W. D. Wang, J. Eckert, and S. Yi, Phil. Mag. Lett. 86, 479 (2006).CrossRefGoogle Scholar
  17. 17.
    D. H. Pi, J. K. Lee, M. H. Lee, S. Yi, J. Eckert, and K. B. Kim, J. Alloys. Comp. 233, 486 (2009).Google Scholar
  18. 18.
    E. S. Park and D. H. Kim, Intermetallics 18, 1867 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Inoue, Acta Mater. 53, 2037 (2000).Google Scholar
  20. 20.
    L. Q. Xing, Y. Li, K. T. Ramesh, J. Li, and T. C. Hufnagel, Phys. Rev. B 4, 180201(R) (2001).CrossRefGoogle Scholar
  21. 21.
    M. H. Lee, J. Y. Lee, D. H. Bae, W. T. Kim, D. J. Sordelet, and D. H. Kim, Intermetallics 12, 1133 (2004).CrossRefGoogle Scholar
  22. 22.
    K. B. Kim, J. Das, F. Baier, M. B. Tang, W. H. Wang, and J. Eckert, Appl. Phys. Lett. 88, 051911 (2006).CrossRefGoogle Scholar
  23. 23.
    E. S. Park, D. H. Kim, T. Ohkubo, and K. Hono, J. Non-Cryst. Solids 351, 1232 (2005).CrossRefGoogle Scholar
  24. 24.
    E. S. Park and D. H. Kim, Acta Mater. 54, 2597 (2006).CrossRefGoogle Scholar
  25. 25.
    J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, and K. Hono, Scr. Mater. 53, 165 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Pan, K. C. Chan, Q. Chen, N. Li, S. F. Guo, and L. Liu, J. Alloys. Comp. 504S, S74 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. W. Lee
    • 1
  • H. J. Shin
    • 1
  • S. H. Hong
    • 1
  • J. T. Kim
    • 1
  • H. Choi-Yim
    • 2
  • Y. Seo
    • 3
  • W. H. Lee
    • 1
  • P. Yu
    • 4
  • M. Qian
    • 4
  • J. K. Lee
    • 5
  • K. B. Kim
    • 1
    • 4
  1. 1.Faculty of Nanotechnology and Advanced Materials EngineeringSejong University, HMCSeoulKorea
  2. 2.Department of PhysicsSookmyung Women’s UniversitySeoulKorea
  3. 3.GRI & HMC, Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulKorea
  4. 4.School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light MetalsThe University of QueenslandBrisbaneAustralia
  5. 5.Division of Advanced Materials EngineeringKongju National UniversityCheonan-si, ChungnamKorea

Personalised recommendations