Advertisement

Metals and Materials International

, Volume 19, Issue 1, pp 45–48 | Cite as

Role of Ca treatment in hydrogen induced cracking of hot rolled API pipeline steel in acid sour media

  • Joonoh Moon
  • Seong-Ju Kim
  • Changhee LeeEmail author
Article

Abstract

The effect of Ca treatment on hydrogen-induced cracking (HIC) resistance of hot rolled pipeline steel was evaluated. HIC testing was carried out in acidic condition according to NACE standard; results clearly prove that HIC resistance is very sensitive to Ca/S ratio. When Ca/S ratio is below the stoichiometric ratio, HIC occurred at mid-thickness of the steel regardless of the S content. This is closely related to the formation of spherical CaS inclusion with Ca treatment instead of MnS inclusion, which acts on crack initiation sites.

Key words

CaS inclusion metals rolling corrosion scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Beidokhti, A. Dolati, and A. H. Koukabi, Mater. Sci. Eng. A 507, 167 (2009).CrossRefGoogle Scholar
  2. 2.
    G. Park, S. Koh, H. Jung, and K. Kim, Corros. Sci. 50, 1865 (2008).CrossRefGoogle Scholar
  3. 3.
    K.-T. Park, S. W. Hwang, J. H. Ji, and C. H. Lee, Met. Mater. Int. 17, 349 (2011).CrossRefGoogle Scholar
  4. 4.
    L. Caballero, J. M. Atienza, and M. Elices, Met. Mater. Int. 17, 899 (2011).CrossRefGoogle Scholar
  5. 5.
    Y.-H. Lee, H. M. Lee, Y. I. Kim, and S.-H. Nahm, Met. Mater. Int. 17, 389 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Moon, C. Park, and S.-J. Kim, Met. Mater. Int. 18, 613 (2012).CrossRefGoogle Scholar
  7. 7.
    J.-K. Kim, J.-S. Lee, and K.-Y. Kim, Met. Mater. Int. 18, 619 (2012).CrossRefGoogle Scholar
  8. 8.
    G. Domizzi, G. Anteriand, and G. Ovejero-García, Corros. Sci. 43, 325 (2001).CrossRefGoogle Scholar
  9. 9.
    T. Y. Jin, Z. Y. Liuand, and Y. F. Cheng, Int. J. Hydrogen Energy 35, 8014 (2010).CrossRefGoogle Scholar
  10. 10.
    L. Shi, J. Chen, and D. O. Northwood, J. Mater. Eng. 13, 273 (1991).CrossRefGoogle Scholar
  11. 11.
    S. W. Joo, J. D. Shin, D. K. Shin, S. H. Hong, J. S. Ki, J. I. Hwang, and B. D. You, Korean J. Met. Mater. 50, 753 (2012).Google Scholar
  12. 12.
    M.-K. Paek, J.-M. Jang, Y.-B. Kang, and J.-J. Park, Korean J. Met. Mater. 50, 116 (2012).Google Scholar
  13. 13.
    M.-K. Paek, W. K. Lee, J. N. Jin, J. M. Jang, and J. J. Park, Korean J. Met. Mater. 50, 45 (2012).Google Scholar
  14. 14.
    NACE Standard TM0284, TX: NACE International, Houston (2003).Google Scholar
  15. 15.
    S. W. Kim, S. S. Hwang, and Y. J. Lee, Korean J. Met. Mater. 50, 583 (2012).Google Scholar
  16. 16.
    W. Kim, H. Jung, G. Park, S. Kohand, and K. Kim, Scripta Mater. 62, 195 (2010).CrossRefGoogle Scholar
  17. 17.
    C. D. Yim, Y. M. Kim, S. H. Park, and B. S. You, Korean J. Met. Mater. 50, 619 (2012).Google Scholar
  18. 18.
    F. Huang, J. Liu, Z. J. Deng, J. H. Cheng, Z. H. Lu, and X. G. Li, Mater. Sci. Eng. A. 527, 6997 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Ferrous Alloy Department, Advanced Metallic Materials DivisionKorea Institute of Materials ScienceChangwon, GyeongnamKorea
  2. 2.Sheet Products Design TeamR&D center, Hyundai Steel CompanyChungnamKorea
  3. 3.Division of Material Science and EngineeringHanyang UniversitySeoulKorea

Personalised recommendations