Advertisement

Metals and Materials International

, Volume 19, Issue 1, pp 19–25 | Cite as

Through-thickness SCC susceptibility of 2024-T351 and 7050-T7451 extrudates in 3.5% NaCl solution

  • Youngju Kim
  • Jaeki Kwon
  • Yooin Jeong
  • Namsub Woo
  • Sangshik Kim
Article

Abstract

The through-thickness stress corrosion cracking (SCC) behaviors of thick 2024-T351 and 7050-T7451 extrudates in 3.5% NaCl solution were studied at both anodic and cathodic applied potentials using a slow strain rate test method. The SCC susceptibilities of 2024-T351 extrudate tended to change in the throughthickness direction, with the lowest susceptibility for the surface specimen. 7050-T7451 specimens, on the other hand, did not show a notable change in the through-thickness SCC susceptibility. The fractographic analysis suggested that the grain boundary played an important role in determining the SCC susceptibility. The SCC process of each alloy was discussed based on the microscopic and fractographic examinations.

Key words

stress corrosion cracking alloy extrusion strain rate tensile test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Speidel, Met. Trans. A 6, 631 (1975).CrossRefGoogle Scholar
  2. 2.
    R. P. Gangloff and S. S. Kim, Environment Enhanced Fatigue Crack Propagation in Metal: Inputs to Fracture Mechanics Life Prediction Model, NASA Contractor report 191538 (1993).Google Scholar
  3. 3.
    W. K. Jang, S. S. Kim, and K. S. Shin, Metall. Mater. Trans. A 33, 1755 (2002).CrossRefGoogle Scholar
  4. 4.
    H. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. L. Choi, R. S. Kalubarme, H. J. Jang, and C. J. Park, Korean J. Met. Mater. 49, 839 (2011).CrossRefGoogle Scholar
  6. 6.
    H. Kamoutsi, G. N. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corros. Sci. 48, 1209 (2006).CrossRefGoogle Scholar
  7. 7.
    W. Zhang and G. S. Frankel, Electrochem. Solid. St. 3, 268 (2000).Google Scholar
  8. 8.
    P. Leblanc and G. S. Frankel, Electrochem. Solid. St. 149, B239 (2002).Google Scholar
  9. 9.
    M. Büchler, T. Watari, and W. H. Smyrl, Corros. Sci. 42, 1661 (2000).CrossRefGoogle Scholar
  10. 10.
    C. Blanc and G. Mankowski, Corros. Sci. 40, 411 (1998).CrossRefGoogle Scholar
  11. 11.
    X. Zhang, Z. Sun, Z. Tang, M. Liu, and B. Li, Proc. Sec. Int. Conf. on Environment-Induced Cracking of Metals (EICM-2) (eds. S. A. Shipilov, R. H. Jones, J. M. Olive, R. B. Rebak), pp. 351, Elsevier, Amsterdam, Netherlands (2008).CrossRefGoogle Scholar
  12. 12.
    W. Zhang and G. S. Frankel, Electrochim. Acta 48, 1193 (2003).CrossRefGoogle Scholar
  13. 13.
    N. Birbilis, M. K. Cavanaugh, and R. G. Buchheit, Corros. Sci. 48, 4202 (2006).CrossRefGoogle Scholar
  14. 14.
    T. C. Tasi and T. H. Chuang, Mater. Sci. Eng. A 225, 135 (1997).CrossRefGoogle Scholar
  15. 15.
    Q. C. Wang, L. T. Wang, and W. Peng, Mater. Sci. Forum 490–491, 97 (2005).CrossRefGoogle Scholar
  16. 16.
    M. Posada, L. E. Murr, C. S. Niou, D. Roberson, D. Little, R. Arrowood, and D. George, Mater. Charact. 38, 259 (1997).CrossRefGoogle Scholar
  17. 17.
    M. J. Robinson and N. C. Jackson, Corros. Sci. 41, 1013 (1999).CrossRefGoogle Scholar
  18. 18.
    S. P. Knight, M. Salagaras, A. M. Wythe, F. De Carlo, A. J. Davenport, and A. R. Trueman, Corros. Sci. 52, 3855 (2010).CrossRefGoogle Scholar
  19. 19.
    R. C. Dorward and T. R. Pritchett, Mater. Design 9, 63 (1988).CrossRefGoogle Scholar
  20. 20.
    ASTM G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2000).Google Scholar
  21. 21.
    ASTM G5, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements (1994).Google Scholar
  22. 22.
    H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2012).CrossRefGoogle Scholar
  23. 23.
    F. Zeides and I. Roman, Mater. Sci. Eng. A 125, 21 (1990).CrossRefGoogle Scholar
  24. 24.
    W. K. Jang, S. S. Kim, and K. S. Shin, Scripta Mater. 40, 503 (1999).CrossRefGoogle Scholar
  25. 25.
    R. Braun, Mater. Wiss. Werkst. 38, 674 (2007).CrossRefGoogle Scholar
  26. 26.
    D. E. Azofeifa, N. Clark, A. Amador, and A. Saenz, Thin Solid Films 300, 295 (1997).CrossRefGoogle Scholar
  27. 27.
    H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, Renew. Sust. Energ. Rev. 13, 845 (2009).CrossRefGoogle Scholar
  28. 28.
    P. Campestrini, E. P. M. Westing. H. W. Rooijen, and J. H. W. Wit, Corros. Sci. 42, 1853 (2000).CrossRefGoogle Scholar
  29. 29.
    A. Hughes, T. H. Muster, A. Boag, A. M. Glenn, C. Luo, X. Zhou, G. E. Thompson, and D. McCulloch, Corros. Sci. 52, 665 (2010).CrossRefGoogle Scholar
  30. 30.
    P. C. King, I. S. Cole, P. A. Corrigan, A. E. Hughes, and T. H. Muster, Corros. Sci. 53, 1086 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Youngju Kim
    • 1
  • Jaeki Kwon
    • 1
  • Yooin Jeong
    • 2
  • Namsub Woo
    • 1
  • Sangshik Kim
    • 3
  1. 1.Mineral Resources Research DivisionKorea Institute of Geoscience & Mineral ResourcesDaejeonKorea
  2. 2.Airframe Design Section Research & Development DivisionKorea aerospace industries, LTDSacheonKorea
  3. 3.Department of Materials Science and Engineering, ReCAPTGyeongsang National UniversityChinjuKorea

Personalised recommendations