Advertisement

Metals and Materials International

, Volume 18, Issue 2, pp 243–247 | Cite as

Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model

  • Hyung-Seop Han
  • Young-Yul Kim
  • Yu-Chan Kim
  • Sung-Youn Cho
  • Pil-Ryung Cha
  • Hyun-Kwang SeokEmail author
  • Seok-Jo YangEmail author
Article

Abstract

The purposes of this preliminary study were to investigate the effect of increased Ca contents (5–10 wt% Ca) in Mg-Ca alloy on the mechanical properties and osseous healing rate in a standard rat defect model. Mechanical tests were performed using a compression system followed by qualitative histological analysis using the hemotoxylin and eosin (H&E) staining method and quantitative reverse transcriptase polymerase chain reaction (reverse transcriptase PCR). Mg-Ca alloy degraded fast in vivo while displaying a high level of the bone formation markersOC and ALP. Favorablemechanical strength properties were displayed as Ca content increased from 5 wt% to 10 wt% to show its potential to be considered as a load bearing implant material. The resultfrom this study suggests that the developed Mg-Ca alloy has the potential to serve as a biocompatible load bearing implant material that is degradable and possibly osteoconductive.

Key words

biomaterials casting mechanical properties bone compression test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomater. 27, 1728 (2006).CrossRefGoogle Scholar
  2. 2.
    Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomater. 29, 1329 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Denkena and A. Lucas, CIRP Annals. 56, 113 (2007).CrossRefGoogle Scholar
  4. 4.
    N. Saris E. Mervaala, H. Karppanen, J. Khawaja, and A. Lewenstam, Clinica Chimica Acta. 294, 1 (2000).CrossRefGoogle Scholar
  5. 5.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, and C. J. Wirth, Biomater. 26, 3557 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Lambotte, Bull. Mem. Soc. Nat. Chir. 28, 1325 (1932).Google Scholar
  7. 7.
    V. V. Troitskii and D. N. Tsitrin, Khirurgiia 8, 41 (1944).Google Scholar
  8. 8.
    M. B. Kannan and R. K. Singh Raman, Biomater. 29, 2306 (2008).CrossRefGoogle Scholar
  9. 9.
    F. Witte, J. Reifenrath, P. Müller, H. Crostack, J. Nellesen, F. Bach, D. Bormann, and M. Rudert, Material Wissen-Schaft Und Werkstofftechnik 37, 504 (2006).CrossRefGoogle Scholar
  10. 10.
    F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, and C. Blawert, Biomater. 28, 2163 (2007).CrossRefGoogle Scholar
  11. 11.
    F. Witte, H. Ulrich, M. Rudert, and E. Willbold, J. Biomed. Mater. Res. Part A 81, 748 (2007).CrossRefGoogle Scholar
  12. 12.
    F. Witte, H. Ulrich, C. Palm, and E. Willbold, J. Biomed. Mater. Res. Part A 81, 757 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Kuwahara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi, and N. Mazaki, Mater. Sci. Forum. 350–3, 349 (2000).CrossRefGoogle Scholar
  14. 14.
    R. Erbel, C. DiMario, and J. Bartunek, Lancet. 369, 1869 (2007).CrossRefGoogle Scholar
  15. 15.
    R. Waksman, R. Pakala, and P. K. Kuchulakanti, Catheter. Cardiovasc. Interv. 68, 607 (2006).CrossRefGoogle Scholar
  16. 16.
    G. D. Zhang, J. J. Huang, K. Yang, B. C. Yang, and H. J. Ai, Acta. Metall. Sinica. 43, 1186 (2007).Google Scholar
  17. 17.
    L. P. Xu, G. N. Yu, E. Zhang, F. Pan, and K. Yang, J. Biomed. Mater. Res. 83, 703 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Feyerabend, F. Witte, M. Kammal, and R. Willumeit, Tissue Eng. 12, 3545 (2006).CrossRefGoogle Scholar
  19. 19.
    R. A. Kaya, H. Cavusoglu, C. Tanik, and A. A. Kaya, J. Neurosurg — Spine 6, 141 (2007).CrossRefGoogle Scholar
  20. 20.
    P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, Catheter. Cardiovasc. Interv. 66, 590 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Y. Lee, G. Han, Y. C. Kim, J. Y. Byun, J. I. Jang, H. K. Seok, and S. J. Yang, Met. Mater. Int. 15, 955 (2009).CrossRefGoogle Scholar
  22. 22.
    I. J. Shon, H. S. Kang, K. T. Hong, J. M. Doh, and J. K. Yoon, Korean J. Met. Mater. 49, 614 (2011).Google Scholar
  23. 23.
    J. Z. Ilich and J. E. Kerstetter, J. Am. Coll. Nutr. 19, 715 (2000).Google Scholar
  24. 24.
    J. F. Nie, Scripta Mater. 37, 1475 (1997).CrossRefGoogle Scholar
  25. 25.
    J. Y. Choi, B. H. Lee, K. B. Song, R. W Park, I. S. Kim, and K. Y. Sohn, J. Cell. Biochem. 61, 609 (1996).CrossRefGoogle Scholar
  26. 26.
    L. D. Quarles, D. A. Yohay, L. W. Lever, R. Caton, and R. J. Wenstrup, J. Bone Miner. Res. 7, 683 (1992).CrossRefGoogle Scholar
  27. 27.
    J. P. Tuckermann, K. Pittois, N. C. Partridge, J. Merregaert, and P. Angel, J. Bone Miner. Res. 15, 1257 (2000).CrossRefGoogle Scholar
  28. 28.
    S. S. A. El-Rahman, Pharmacol. Res. 47, 189 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2012

Authors and Affiliations

  • Hyung-Seop Han
    • 1
  • Young-Yul Kim
    • 2
  • Yu-Chan Kim
    • 3
  • Sung-Youn Cho
    • 4
  • Pil-Ryung Cha
    • 5
  • Hyun-Kwang Seok
    • 3
    Email author
  • Seok-Jo Yang
    • 1
    Email author
  1. 1.Department of Mechatronics EngineeringChungnam National UniversityDaejeonKorea
  2. 2.Department of Orthopedic SurgeryThe Catholic UniversityDaejeonKorea
  3. 3.Biomedical Research InstituteKorea Institute of Science & TechnologySeoulKorea
  4. 4.Department of Mechanical EngineeringKorea UniversitySeoulKorea
  5. 5.School of Advanced Materials EngineeringKookmin UniversitySeoulKorea

Personalised recommendations