Advertisement

Metals and Materials International

, Volume 18, Issue 2, pp 217–223 | Cite as

Effect of tungsten addition on the mechanical properties and corrosion resistance of S355NL forging steel

  • Jingwei Zhao
  • Yong Woo Kim
  • Jeong Hun Lee
  • Jin Mo Lee
  • Hi Sang Chang
  • Chong Soo Lee
Article

Abstract

A study was made to investigate the effect of tungsten (W) addition on the microstructure, tensile properties, Vickers hardness, and corrosion resistance of S355NL forging steel. Mechanical properties were evaluated and considered in the context of the interlamellar spacing of pearlite. Microstructural analysis revealed that the addition of W favors the formation of intragranular acicular ferrite and leads to a decrease in the interlamellar spacing of pearlite. After W addition, the corrosion rust film was intact. The steel containing W showed fewer microcracks distributed in the corroded surface compared with that without W. It was concluded that the addition of W is beneficial for improvement of both the mechanical properties and corrosion resistance of S355NL forging steel.

Key words

metals forging mechanical properties corrosion tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Farsetti and A. Blarasin, Int. J. Fatigue 10, 153 (1988).CrossRefGoogle Scholar
  2. 2.
    R. Kuziak, T. Bold, and Y. W. Cheng, J. Mater. Process. Technol. 53, 255 (1995).CrossRefGoogle Scholar
  3. 3.
    G. Krauss, Steels: Processing, Structure, and Performance, p. 230, ASM International, Ohio (2005).Google Scholar
  4. 4.
    H. K. Sung, S. Y. Shin, B. Hwang, C. G. Lee, N. J. Kim, and S. Lee, Korean J. Met. Mater. 48, 798 (2010).Google Scholar
  5. 5.
    A. Elmalki Alaoui, D. Thevenet, and A. Zeghloul, Fatigue Fract. Eng. Mater. Struct. 30, 489 (2007).CrossRefGoogle Scholar
  6. 6.
    N. Lautrou, D. Thevenet, and J.-Y. Cognard, Fatigue Fract. Eng. Mater. Struct. 32, 403 (2009).CrossRefGoogle Scholar
  7. 7.
    P. Y. Decreuse, S. Pommier, L. Gentot, and S. Pattofatto, Int. J. Fatigue 31, 1733 (2009).CrossRefGoogle Scholar
  8. 8.
    A. El Malki Alaoui, D. Thevenet, and A. Zeghloul, Eng. Fract. Mech. 76, 2359 (2009).CrossRefGoogle Scholar
  9. 9.
    B. H. Li, Y. Liu, J. Li, S. J. Gao, H. Cao, and L. He, Mater. Des. 31, 877 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Y. F. Sun, S. K. Guan, X. Deng, and X. Y. Yan, Mater. Sci. Eng. A 478, 214 (2008).CrossRefGoogle Scholar
  11. 11.
    J. S. Park, S. J. Kim, and C. S. Lee, Mater. Sci. Eng. A 298, 127 (2001).CrossRefGoogle Scholar
  12. 12.
    N. H. Heo and H. C. Lee, Scr. Metall. Mater. 33, 2031 (1995).CrossRefGoogle Scholar
  13. 13.
    W. S. Ji, Y.-W. Jang, and J.-G. Kim, Met. Mater. Int. 17, 463 (2011).CrossRefGoogle Scholar
  14. 14.
    S. H. Mousavi Anijdan, A. Bahrami, N. Varahram, and P. Davamic, Mater. Sci. Eng. A 454–455, 623 (2007).Google Scholar
  15. 15.
    M. K. Ahn, H. S. Kwon, and H. M. Lee, Corros. Sci. 40, 307 (1998).Google Scholar
  16. 16.
    A. Belfrouh, C. Masson, D. Vouagner, A. M. De Becdeliever, N. S. Parkash, and J. P. Audouard, Corros. Sci. 38, 1639 (1996).CrossRefGoogle Scholar
  17. 17.
    I. Madariaga and I. Gutiérrez, Scr. Mater. 37, 1185 (1997).CrossRefGoogle Scholar
  18. 18.
    C. García de Andrés, C. Capdevila, I. Madariaga, and I. Gutiérrez, Scr. Mater. 45, 709 (2001).CrossRefGoogle Scholar
  19. 19.
    J.-H. Shim, Y. M. Cho, S. H. Chung, J.-D. Shim, and D. N. Lee, Acta Metall. 47, 2751 (1999).Google Scholar
  20. 20.
    T. Pan, Z.-G. Yang, C. Zhang, B.-Z. Bai, and H.-S. Fang, Mater. Sci. Eng. A 438–440, 1128 (2006).Google Scholar
  21. 21.
    H. K. D. H. Bhadeshia, Bainite in Steels, 2nd ed., p. 238, The University Press, Cambridge, London (2001).Google Scholar
  22. 22.
    R. A. Ricks, P. R. Howell, and G. S. Barritte, J. Mater. Sci. 17, 732 (1982).CrossRefGoogle Scholar
  23. 23.
    J. R. Yang and H. K. D. H. Bhadeshia, Advances in Welding Science and Technology (ed. S.A. David), p. 187, ASM, Metals Park, Ohio (1986).Google Scholar
  24. 24.
    M. A. Linaza, J. L. Romero, J. M. Rodríguez-Ibabe, and J. J. Urcola, Scr. Metall. Mater. 29, 1217 (1993).CrossRefGoogle Scholar
  25. 25.
    J. M. Gregg and H. K. D. H. Bhadeshia, Acta Metall. Mater. 42, 3321 (1994).CrossRefGoogle Scholar
  26. 26.
    T. Pan, Z. G Yang, B. Z. Bai, and H. S. Fang, Acta Metall. Sin. 39, 1037 (2003).Google Scholar
  27. 27.
    A. R. Marder and B. L. Bramfitt, Metall. Trans. A 7, 365 (1976).CrossRefGoogle Scholar
  28. 28.
    K. K. Ray and D. Mondal, Acta Metall. Mater. 39, 2201 (1991).CrossRefGoogle Scholar
  29. 29.
    G. E. Pellissier, M. F. Hawekes, W. A. Johnson, and R. F. Mehl, Trans. ASM 30, 1049 (1942).Google Scholar
  30. 30.
    J. W. Cahn and R. L. Fullman, Trans. AIME 206, 610 (1956).Google Scholar
  31. 31.
    G. Birkbeck and T. C. Wells, Trans. AIME 242, 2217 (1968).Google Scholar
  32. 32.
    E. E. Underwood, Quantitative Stereology, p. 73, Addison-Wesley, Reading, Massachusetts (1970).Google Scholar
  33. 33.
    A. Roósz, Z. Gácsi, and M. K. Baan, Metallography 13, 299 (1980).CrossRefGoogle Scholar
  34. 34.
    G. F. Vander Voort, Metallography 17, 1 (1984).CrossRefGoogle Scholar
  35. 35.
    J. F. Tilbury, T. D. Motishaw, and G. D. W. Smith, Metallography 19, 243 (1986).CrossRefGoogle Scholar
  36. 36.
    H. S. Fong, Metallography 23, 173 (1989).CrossRefGoogle Scholar
  37. 37.
    F. G. Caballero, C. García de Andrés, and C. Capdevila, Mater. Charact. 45, 111 (2000).CrossRefGoogle Scholar
  38. 38.
    O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran, and H. K. Khaira, Mater. Charact. 46, 347 (2001).CrossRefGoogle Scholar
  39. 39.
    F. Abe, T. Noda, H. Araki, and S. Nakazawa, J. Nucl. Mater. 179–181, 663 (1991).CrossRefGoogle Scholar
  40. 40.
    M. Díaz, I. Madariaga, J. M. Rodriguez-Ibabe, and I. Gutierrez, J. Constr. Steel Res. 46, 413 (1998).CrossRefGoogle Scholar
  41. 41.
    M. C. Zhao, K. Yang, and Y. Y. Shan, Mater. Lett. 57, 1496 (2003).CrossRefGoogle Scholar
  42. 42.
    F. R. Xiao, B. Liao, Y. Y. Shan, G. Y. Qiao, Y. Zhong, C. L. Zhang, and K. Yang, Mater. Sci. Eng. A 431, 41 (2006).CrossRefGoogle Scholar
  43. 43.
    A. Irhzo, Y. Segui, N. Bui, and F. Dabosi, Corros. Sci. 26, 769 (1986).CrossRefGoogle Scholar
  44. 44.
    J. Chen and J. K. Wu, Corros. Sci. 30, 53 (1990).CrossRefGoogle Scholar
  45. 45.
    M. Itagaki, R. Nozue, K. Watanabe, H. Katayama, and K. Noda, Corros. Sci. 46, 1301 (2004).CrossRefGoogle Scholar
  46. 46.
    D. W. Kim and H. Kim, Korean J. Met. Mater. 48, 523 (2010).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2012

Authors and Affiliations

  • Jingwei Zhao
    • 1
  • Yong Woo Kim
    • 1
  • Jeong Hun Lee
    • 1
  • Jin Mo Lee
    • 2
  • Hi Sang Chang
    • 2
  • Chong Soo Lee
    • 1
  1. 1.Department of Materials Science and Engineering, and Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea
  2. 2.Taewoong Co. Ltd.BusanKorea

Personalised recommendations