Advertisement

Metals and Materials International

, Volume 18, Issue 1, pp 1–6 | Cite as

Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process

  • Chih-Chun Hsieh
  • Ming-Shou Shi
  • Weite Wu
Article

Abstract

The purpose of this study is to discuss the effect of annealing temperatures on growth of intermetallic phases in Al/Cu composites during the accumulative roll bonding (ARB) process. Pure Al (AA1100) and pure Cu (C11000) were stacked into layered structures at 8 cycles as annealed at 300 °C and 400 °C using the ARB technique. Microstructural results indicate that the necking of layered structures occur after 300 °C annealing. Intermetallic phases grow and form a smashed morphology of Al and Cu when annealed at 400 °C. From the XRD and EDS analysis results, the intermetallic phases of Al2Cu (θ) and Al4Cu92) formed over 6 cycles and the AlCu (η2) precipitated at 8 cycles after 300 °C annealing. Three phases (Al2Cu (θ), Al4Cu92), and AlCu (η2)) were formed over 2 cycles after 400 °C annealing.

Key words

composites annealing diffusion microstructure precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Saito, H. Utsunomiya, H. Suzuki, and T. Sakai, Scripta Mater. 42, 1139 (2000).CrossRefGoogle Scholar
  2. 2.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, J. Japan Inst. Met. 63, 790 (1999).Google Scholar
  3. 3.
    M. Eizadjou, H. D. Manesh, and K. Janghorban, J. Alloys Compd. 474, 406 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Alizadeh and M. H. Paydar, J. Alloys Compd. 474, 231 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Kolahi, A. Akbarzadeh, and M.R. Barnett, J. Mater. Process. Technol. 209, 1436 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Ghalandari and M. M. Moshksar, J. Alloys Compd. 506, 172 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Danaie, C. Mauer, D. Mitlin, and J. Huot, Int. J. Hydrogen Energy 36, 3022 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Mozaffari, H. Danesh Manesh, and K. Janghorban, J. Alloys Compd. 489, 103 (2010).CrossRefGoogle Scholar
  9. 9.
    K. K. Chawla, Composite Mater. Sci. Eng. 2 nd ed., pp.164–211, Springer Science, New York (2001).Google Scholar
  10. 10.
    A. B. Strong, Mater., Methods and Applications, 2 nd ed., pp.1–46, Society of Manufacturing Engineers, Dearborn, Michigan (2007).Google Scholar
  11. 11.
    I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, 2 nd ed., pp.3–31, Oxford University Press, New York (2005).Google Scholar
  12. 12.
    M. Koberna and J. Fiala, J. Phys. Chem. Solids 54, 595 (1993).CrossRefGoogle Scholar
  13. 13.
    T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle, J. Mater. Sci. 34, 4133 (1999).CrossRefGoogle Scholar
  14. 14.
    W. D. Callister Jr., Mater. Sci. Eng. An Introduction, 6th ed., pp.101–102, John Wiley & Sons, Inc., New York (2003).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations