Metals and Materials International

, Volume 17, Issue 6, pp 1001–1007 | Cite as

Hydriding/dehydriding behavior of MgHx-iron oxides composites

  • Kyeong-Il Kim
  • Tae-Whan Hong


Hydrogen has considerable potential as a renewable substitute for fossil fuels due to its high gravimetric energy density and environment friendliness. In particular, metal hydrides were attracted much interest given that its hydrogen capacity exceeds. One approach that can improve the kinetics is the addition of iron oxide. In this study, the hydrogen absorption/desorption properties of Mg were improved. The effect of the iron oxide concentration on the kinetics of the Mg hydrogen absorption reaction was investigated. MgHx-iron oxide composites were synthesized by hydrogen-induced mechanical alloying. The synthesized powder was characterized by XRD, SEM, and simultaneous TG/DSC analysis. The hydriding behaviors were evaluated, using an automatic Sievert’s-type PCT apparatus. The absorption and desorption kinetics of Mg catalyzed with 5 and 10 wt.% Fe2O3/Fe3O4 were determined at 423, 473, 523, 573, and 623K, respectively. The results of hydrogenation properties on MgHx-Iron oxide composites were measured to be about 1.0∼4.7 wt.% under 1 MPa H2 atmosphere.


hydrogen absorbing materials MgHx-iron oxides kinetics mechanical alloying pressure-composition-temperature (PCT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Barkhordarian, T. Klassen, and R. Bormann, Scripta Mater. 49, 213 (2003).CrossRefGoogle Scholar
  2. 2.
    A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scripta Mater. 52, 719 (2005).CrossRefGoogle Scholar
  3. 3.
    J.-L. Bobet, F. J. Castro, and B. Chevalier, Scripta Mater. 52, 33 (2005).CrossRefGoogle Scholar
  4. 4.
    J.-L. Bobet, B. Chevalier, M. Y. Song, and B. Darriet, J. Alloys Compd. 356–357, 570 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Y. Song, I. H. Kwon, and J.-S. Bae, Int. J. Hydrogen Energy 30, 1107 (2005).Google Scholar
  6. 6.
    J. Huot, J. F. Pelletier, L. B. Lurio, M. Sutton, and R. Schulz, J. Alloys Compd. 348, 319 (2003).CrossRefGoogle Scholar
  7. 7.
    C. X. Shang, M. Bououdina, Y. Song, and Z. X. Guo, Int. J. Hydrogen Energy 29, 73 (2004).Google Scholar
  8. 8.
    W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 315, 237 (2001).CrossRefGoogle Scholar
  9. 9.
    G. Laing, J. Huot, S. Boily, A. Van Neste, and R. Schulz, J. Alloys Compd. 291, 295 (1999).CrossRefGoogle Scholar
  10. 10.
    G. Laing, J. Huot, S. Boily, A. Van Neste, and R. Schulz, J. Alloys Compd. 292, 247 (1999).CrossRefGoogle Scholar
  11. 11.
    K.-I. Kim and T.-W. Hong, J. Kor. Inst. Met. & Mater. 47, 433 (2009).Google Scholar
  12. 12.
    Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K. Liu, J. Alloys Compd. 422, 299 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, Scripta Materialia 56, 841 (2007).Google Scholar
  14. 14.
    S. Orimo and H. Fujii, J. Alloys Compd. 232, L16 (1996).CrossRefGoogle Scholar
  15. 15.
    M. Y. Song, S. N. Kwon, D. R. Mumm, S. H. Baek, and S. H. Hong, Met. Mat. Int. 12, 525 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM)Chungju National UniversityChungbukKorea

Personalised recommendations