Advertisement

Metals and Materials International

, Volume 17, Issue 5, pp 847–852 | Cite as

The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production

  • G. Huang
  • K. M. WuEmail author
Article

Abstract

The microstructural characterization of a low carbon high strength microalloyed steel produced by compact strip production in conjunction with relaxation precipitation controlling the transformation technique was investigated. The microstructural observations were analyzed by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and electron backscattering diffraction. The microstructure of the investigated steel consisted of predominantly granular bainite and lots of acicular ferrite and polygonal ferrite. The average crystallographic grain size was approximately 4 mm. Relaxation before fast cooling facilitated the formation of dislocation cells and intragranular acicular ferrite grains. Lath-like or plate-like acicular ferrite partitioned the austenite grains into many smaller parts, and the transformation of granular bainite at lower temperatures was confined to the smaller zones, resulting in smaller grain sizes. The yield strength, elongation and low temperature (−60 °C) impact toughness of the steel plates were 614 MPa, 24.1 %, 116 J, respectively. The excellent combination of mechanical properties was attributed to the formation of fine grains and sub-cellular structures.

Keywords

metals rolling, microstructure grain refinement electron backscattering diffraction (EBSD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Maki, Physical Metallurgy of Directed-quenched Steels (eds., K. A. Taylor, S. W. Thompson, and F. B. Fletch), p. 3, TMS, Warrendale, PA, USA (1993).Google Scholar
  2. 2.
    T. Koseki, K. Amano, and M. Imanaka, Physical Metallurgy of Directed-quenched Steels (eds., K. A. Taylor, S. W. Thompson, and F. B. Fletch), p. 297, TMS, Warrendale, PA, USA (1993).Google Scholar
  3. 3.
    E. J. Czyryca, R. Link, and R. Wong, Nav. Eng. J. 102, 63 (1990).CrossRefGoogle Scholar
  4. 4.
    C. J. Shang, X. M. Wang, X. L. He, S. W. Yang, and Y. Yuan, J. Univ. Sci. Technol. Beijing 8, 224 (2001).Google Scholar
  5. 5.
    G. Flemming and K. E., Hensger, Aise. Steel. Technol. 1, 53 (2000).Google Scholar
  6. 6.
    N. Y. Tian, Continuous Casting and Continuous Rolling of Thin Slab, Beijing, Metallurgical Industry Press (2004).Google Scholar
  7. 7.
    P. C. Zambrand, M. P. Cuerrero, and R. Cclas, Mater. Charact. 47, 275 (2001).CrossRefGoogle Scholar
  8. 8.
    X. D. Huo, Y. L. Wang, D. L. Liu, N. J. Chen, Y. L. Kang, J. Fu, Z. B. Wang, and G. J. Chen, Mater. Sci. Technol. 12, 167 (2004).Google Scholar
  9. 9.
    S. W. Yang, X. M. Wang, C. J. Shang, X. L. He, and Y. Yuan, J. Univ. Sci. Technol. Beijing. 8, 214 (2001).Google Scholar
  10. 10.
    C. J. Shang, S. W. Yang, X. M. Wang, Y. Yuan, and X. L. He, HSLA Steels 2000 (eds., G. Liu and F. Wang), p. 304, Metallurgical Industry Press, Beijing, China, (2000).Google Scholar
  11. 11.
    G. Zhou, M. Wen, P. Li, and X. He, Acta Metall. Sin. 13, 623 (2000).Google Scholar
  12. 12.
    S. W. Yang, C. J. Shang, X. M. Wang, Y. Yuan, and X. L. He, HSLA Steels2000 (eds., G. Liu and F. Wang), p. 227, Metallurgical Industry Press, Beijing, China (2000).Google Scholar
  13. 13.
    S. W. Yang, X. L. He, M. Chen, Z. Dang, and J. Ko, Mater. Sci. Eng. 12, 49 (1994).Google Scholar
  14. 14.
    J. M. Gregg and H. K. D. H. Bhadeshia, Acta mater. 45, 739 (1997).CrossRefGoogle Scholar
  15. 15.
    J.-H. Shim, Y. W. Cho, S. H. Chung, J. -D. Shim, and D. N. Lee, Acta mater. 47, 2751 (1999).CrossRefGoogle Scholar
  16. 16.
    S. Zhang, N. Hattori, M. Enomoto, and T. Tarui, ISIJ Int. 36, 1301 (1996).CrossRefGoogle Scholar
  17. 17.
    J. Fu, J. Zhu, L. Di, F. S. Tong, D. L. Liu and Y. L. Wang, Acta Metall. Sin. 36, 801 (2000).Google Scholar
  18. 18.
    W. Du, L. Z. Jiang, Q. S. Sun, Z. Y. Liu, and X. Zhang, J. Iron Steel Res. Int. 17, 47 (2010).CrossRefGoogle Scholar
  19. 19.
    M. Zhou, Q. H. Ma, L. X. Du, and X. H. Liu, J. Northeastern Univ. 30, 985 (2009).Google Scholar
  20. 20.
    X. M. Wang, X. L. He, S. W. Yang, C. J. Shang, and H. B. Wu, ISIJ Int. 42, 1553 (2002).CrossRefGoogle Scholar
  21. 21.
    X. M. Wang, C. J. Shang, S. W. Yang, X. L. He, and X. Y. Liu, Mater. Sci. Eng. A 162, 438 (2006).Google Scholar
  22. 22.
    Y. Morikage, K. Oi, F. Kawabata, and K. Amano, Tetsu to Hagane 84, 40 (1998).Google Scholar
  23. 23.
    L. Cheng and K. M. Wu, Acta mater. 57, 3754 (2009).CrossRefGoogle Scholar
  24. 24.
    X. L. Wan, R. Wei, and K. M. Wu, Mater. Charact. 61, 726 (2010).CrossRefGoogle Scholar
  25. 25.
    C. J. Shang, X. M. Wang, S. W. Yang, and X. L. He. J. Univ. Sci. Technol. Beijing 11, 221 (2004).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2011

Authors and Affiliations

  1. 1.International Research Institute for Steel TechnologyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations