Advertisement

Metals and Materials International

, Volume 17, Issue 5, pp 765–770 | Cite as

Characterization of thermally oxidized Ti6Al7Nb alloy for biological applications

  • Huseyin CimenogluEmail author
  • Onur Meydanoglu
  • Murat Baydogan
  • Hakan Bermek
  • Pinar Huner
  • E. Sabri Kayali
Article

Abstract

Wear and biological performances of a thermally oxidized Ti6Al7Nb alloy were investigated. Thermal oxidation (TO) performed at 600 °C for 60 h in air formed a 0.6 μm thick and relatively rough (having an average surface roughness of 1.1 μm) oxide layer (OL) on the surface. The OL was identified as the rutile form of TiO2 and there was an oxygen diffusion zone (ODZ) with an average thickness of 5 μm just beneath it. The applied TO process resulted in more than ten-fold increase in wear resistance in a simulated body fluid (SBF) solution. Additionally, the biological performance was also enhanced as revealed by SBF immersion and cell culture tests.

Key words

biomaterials surface modification oxidation scanning electron microscopy wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Leyens and M. Peters, Titanium and Titanium Alloys, Wiley-VCH, Köln (2003).CrossRefGoogle Scholar
  2. 2.
    X. Liu, P. K. Chu and C. Ding, Mater. Sci. Eng. R. 47, 49 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. Oshida, Bioscience and Bioengineering of Titanium Materials, Elsevier, New York (2006).Google Scholar
  4. 4.
    M. F. Semlitsch, H. Weber, R. M. Streicher, and R. Schön, Biomaterials 13, 781 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008).CrossRefGoogle Scholar
  6. 6.
    I.-V. Brânzoi, M. Iordoc, and F. Brânzoi, U.P.B. Sci. Bull. Series B 71, 31 (2009).Google Scholar
  7. 7.
    M. M. Hukoviæ, A. Kwokal, and J. Piljac, Biomaterials 24, 3765–3775 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog Mat. Sci. 54, 397 (2009).CrossRefGoogle Scholar
  9. 9.
    P. A. Dearnley, Surf. Coat. Technol. 198, 483 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Dong and T. Bell, Wear 238, 131 (2000).CrossRefGoogle Scholar
  11. 11.
    W. Yan and X. X. Wang, J. Mater. Sci. 39, 5583 (2004).CrossRefGoogle Scholar
  12. 12.
    P. A. Dearnley, K. L. Dahm, and H. Cimenoglu, Wear 256, 469 (2004).CrossRefGoogle Scholar
  13. 13.
    H. Guleryuz and H. Cimenoglu, Biomaterials 25, 3325 (2004).CrossRefGoogle Scholar
  14. 14.
    H. Guleryuz and H. Cimenoglu, Surf. Coat. Technol. 192, 164 (2005).CrossRefGoogle Scholar
  15. 15.
    F. M. Guclu, H. Cimenoglu, and E. S. Kayali, Mater. Sci. Eng. C 26, 1367 (2006).CrossRefGoogle Scholar
  16. 16.
    K. L. Dahm, Wear 267, 409 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Kumar, T. S. N. S. Narayanan, S. G. S. Raman, and S. K Seshadri, Mater. Chem. Phys. 119, 337 (2010).CrossRefGoogle Scholar
  18. 18.
    K.-S. Hwang, Y.-H. Yun, S.-S. Min, Y.-R. Lee, and Y.-J. Park, Met. Mater. Int. 8, 411 (2002).CrossRefGoogle Scholar
  19. 19.
    X-X. Wang,, W. Yan, S. Hayakawa, K. Tsuru, and A. Osaka, Biomaterials 24, 4631 (2003).CrossRefGoogle Scholar
  20. 20.
    L. Saldaña, G. Vallés, N. Vilaboa, J. Gonzáles-Cabreo, J. L. Gonzáles-Carrasco, M. E. Martinez, and L. Munuera, Eur. Cells Mater. 5, 86 (2003).Google Scholar
  21. 21.
    A. S. Santiago, E. A. D. Santos, M. S. Sader, M. F. Santiago, and G. D. Soares, Braz. Oral. Res. 19, 203 (2005).CrossRefGoogle Scholar
  22. 22.
    P. S. Vanzillotta, M. S. Sader, I. N. Bastos, and G. D. Soares, Dent. Mater. 22, 275 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. J. Park, H. J. Song, I. Kim, and H. S. Yong, J. Mater. Sci.: Mater. Med. 18, 565 (2007).CrossRefGoogle Scholar
  24. 24.
    T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006).CrossRefGoogle Scholar
  25. 25.
    P. Valerio, M. M. Pereira, A. M. Goes, and M. F. Leite, Biomaterials 25, 2941 (2004).CrossRefGoogle Scholar
  26. 26.
    M. D. Unlu, O. Meydanoglu, and H. Cimenoglu, Defect. Diffus. Forum 297–301, 1389 (2010).CrossRefGoogle Scholar
  27. 27.
    H. Guleryuz and H. Cimenoglu, J. Alloy Compd. 472, 241 (2009).CrossRefGoogle Scholar
  28. 28.
    Y. Shida and H. Anada, Oxid. Met. 45, 197–219 (1996).CrossRefGoogle Scholar
  29. 29.
    H. Jiang, M. Hirohasi, Y. Lu, and H. Imanari, Scripta mater. 46, 639 (2002).CrossRefGoogle Scholar
  30. 30.
    C. Leinenbach and D. Eifler, Biomaterials 27, 1200 (2006).CrossRefGoogle Scholar
  31. 31.
    O. Meydanoglu, M. Cingi, M. Baydogan, H. Cimenoglu, and E.S. Kayali, 137th Annual Meeting and Exhibition of the Minerals-Metals-and-Materials-Society, New Orleans, LA (2008).Google Scholar
  32. 32.
    M. Cingi, O. Meydanoglu, H. Guleryuz, M. Baydogan, H. Cimenoglu, and E. S. Kayali, Mater. Sci. Forum 561–565, 2179 (2007).CrossRefGoogle Scholar
  33. 33.
    J. H. Park, D. Y. Lee, K. T. Oh, Y. K. Lee, K. M. Kim, and K. N. Kim, Mater. Lett. 60, 2573 (2006).CrossRefGoogle Scholar
  34. 34.
    Y. Z. Wan, Y. Huang, D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, F. He, and C. Gao, Mat. Sci. Eng. C 27, 855 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2011

Authors and Affiliations

  • Huseyin Cimenoglu
    • 1
    Email author
  • Onur Meydanoglu
    • 1
  • Murat Baydogan
    • 1
  • Hakan Bermek
    • 2
  • Pinar Huner
    • 2
  • E. Sabri Kayali
    • 1
  1. 1.Department of Metallurgy and Materials EngineeringIstanbul Technical UniversityMaslak - IstanbulTurkey
  2. 2.Department of Molecular Biology and GeneticsIstanbul Technical UniversityMaslak - IstanbulTurkey

Personalised recommendations