Advertisement

Metals and Materials International

, Volume 17, Issue 2, pp 341–347 | Cite as

Assessment of the electrochemical corrosion properties and environmentally induced cracking of an A106 Gr B steel pipe weld in a NaCl solution saturated with H2S gas

  • Gyu young Lee
  • Dongho Bae
Article

Abstract

In the area of heavy construction, welding processes are vital in the production and maintenance of pipelines and power plants. The fusion welding process generates formidable welding residual stress and metallurgical change, which together increase the crack driving force and reduce the resistance against brittle fracturing and environmental fracturing. This is a serious problem with many alloys, and it also arises in A106 Gr B steel pipes. This type of piping, which is used in petrochemical and heavy chemical plants, either degrades due to the corrosive environment, e.g., those containing chlorides and sulfides, and/or become damaged during service due to various corrosion damage mechanisms. Thus, in this study, after numerical and experimental analyses of the welding residual stress of a multi-pass welded A106 Gr B steel pipe weld, the electrochemical corrosion properties and environmentally induced cracking of an A106 Gr B steel pipe weld were assessed in a 5.0 wt.% NaCl solution that was saturated with H2S gas at room temperature on the basis of NACE TM 0177-90. In terms of sulfide stress corrosion cracking (SSCC) and sulfide corrosion fatigue (SCF), the low SSCC limit of smooth specimens, σSSCCsmooth, and the SCF limit, ΔσSCF, were 46 % and 32 % (160 MPa) of the ultimate tensile strength (502 MPa) of an A106 Gr B steel pipe weld, respectively. Further, (Δσres)SCF was assessed under 75 MPa, which is 15 % of the tensile strength.

Keywords

welding corrosion residual stress strength fatigue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Kim, D. H. Bae, S. Y. Cho, and B. K. Kim, Key Eng. Mat. 183–187, 1345 (2000).CrossRefGoogle Scholar
  2. 2.
    D. H. Bae, S. Y. Cho, C. H. Kim, J. K. Hong, and T. L. Tsai, J. Mech. Sci. Technol. 16, 1054 (2002).Google Scholar
  3. 3.
    D. H. Bae and C. H. Kim, J. Mech. Sci. Technol. 18, 114 (2004).Google Scholar
  4. 4.
    H. S. Lee, J. S. Jung, and E. H. Kim, J. Kor. Inst. Met. & Mater. 47, 99 (2009).Google Scholar
  5. 5.
    J. H. Han, D. N. Nguyen, Y. W. Jang, and J. G. Kim, J. Kor. Inst. Met. & Mater. 47, 558 (2009).Google Scholar
  6. 6.
    S. W. Kim, S. S. Hwang, and H. P. Kim, J. Kor. Inst. Met. & Mater. 47, 819 (2009).Google Scholar
  7. 7.
    S. U. Kohm, K. S. Ro, and K. Y. Kim, Corros. Sci. Tech. 1, 130 (2002).Google Scholar
  8. 8.
    W. S. Chang, B. H. Yoon, and Y. G. Kweon, Corros. Sci. Tech. 3, 81 (2004).Google Scholar
  9. 9.
    K. K. Baek, H. I. Lee, and C. H. Lee, Corros. Sci. Tech. 3, 154 (2004).Google Scholar
  10. 10.
    W. Y. Lee, S. U. Koh, and K. Y. Kim, Corros. Sci. Tech. 4, 39 (2005).Google Scholar
  11. 11.
    V. D. Huy, N. T. P. Thoa, T. Q. Phong, and N. T. Hoang, Corros. Sci. Tech. 4, 95 (2005).Google Scholar
  12. 12.
    A. J. Sedriks and B. C. Syrett, NACE TM 0177-90 (1990).Google Scholar
  13. 13.
    G. Y. Lee and D. H. Bae, Proc. Fall Annual Meeting, p. 203, Korean Society of Mechanical Engineers, Yongpyung, Korea (2008).Google Scholar
  14. 14.
    D. A. John, Principles and Prevention of Corrosion, p. 356–360, Prentice Hall (1992).Google Scholar
  15. 15.
    Standard Reference Test Method for Making Potentiostatic and Potentio-dynamic Anodic Polarization Measurements, ASTM, G5-94, 03.03 (2002).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Graduate School, Mechanical EngineeringSungkyunkwan UniversityGyeonggiKorea
  2. 2.School of Mechanical EngineeringSungkyunkwan UniversityGyeonggiKorea

Personalised recommendations