Metals and Materials International

, Volume 16, Issue 1, pp 1–6 | Cite as

On the transitions of deformation modes of fully austenitic steels at room temperature

  • Kyung-Tae ParkEmail author
  • Gyosung Kim
  • Sung Kyu Kim
  • Sang Woo Lee
  • Si Woo Hwang
  • Chong Soo Lee


The present study was undertaken to provide a more comprehensive understanding of the deformation modes of advanced fully austenitic steels exhibiting an enhanced combination of strength and ductility. For this purpose, a new plasticity, called microband induced plasticity (MBIP), was introduced. In addition, the origin of its superb combination of strength and ductility over the well-known transformation induced plasticity (TRIP) and twin induced plasticity (TWIP) was elucidated. With the aids of previously developed models, we focused on predicting the transitions among TRIP, TWIP, and MBIP, primarily in terms of the stacking fault energy. The analysis revealed that the TRIP-TWIP transition can be reasonably predicted by the energy balance for FCC austenite — HCP ɛ martensite transformation. The TWIP-MBIP transition can be addressed by the critical stress for mechanical twinning, which causes the infinite divergence of the Shockley partials. Lastly, the TWIP-MBIP transition model was validated by comparing it with the experimental data.


metals deformation mechanical properties tensile test dislocation twining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Lee, T. S. Byun, J. D. Hunn, M. H. Yoo, K. Farrell, and L. K. Mansur, Acta mater. 49, 3269 (2001).CrossRefGoogle Scholar
  2. 2.
    S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Goulton, Mater. Sci. Eng. A A387–389, 158 (2004).Google Scholar
  3. 3.
    W. Bleck, Proc. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys (ed. B. C. De Cooman), p. 13, Steel GRIPS, Ghent, Belgium (2002).Google Scholar
  4. 4.
    O. Grässel, L. Krüge, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity 16, 1391 (2000).zbMATHCrossRefGoogle Scholar
  5. 5.
    K. H. Ahn, D. H. Yoo, M. H. Seo, S. H. Park, and K. S. Chung, Met. Mater. Int. 15, 637 (2009).CrossRefGoogle Scholar
  6. 6.
    G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).Google Scholar
  7. 7.
    J. D. Yoo and K.-T. Park, Mater. Sci. Eng. A A496, 417 (2004).zbMATHGoogle Scholar
  8. 8.
    C. Jing, D.-W. Suh, C. S. Oh, Z. Wang, and S. J. Kim, Met. Mater. Int. 13, 13 (2007).CrossRefGoogle Scholar
  9. 9.
    J. D. Yoo and K.-T. Park, Proc. Conf. of Mater. Sci. & Tech. 2008, p.1845, The Printing House Inc., WI, USA (2008).Google Scholar
  10. 10.
    G. B. Olson and M. Cohen, Metall. Trans. 7A, 1897 (1976).Google Scholar
  11. 11.
    G. B. Olson and M. Cohen, Metall. Trans. 7A, 1905 (1976).Google Scholar
  12. 12.
    T. S. Byun, Acta mater. 51, 3063 (2003).CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Talonen, H. Hänninen, Acta mater. 55, 6108 (2007).CrossRefGoogle Scholar
  14. 14.
    J. D. Yoo, S. W. Hwang, and K.-T. Park, Metall. Mater. Trans. A (in press).Google Scholar
  15. 15.
    V. Gerold and H.-P. Karnthaler, Acta metall. 37, 2177 (1989).CrossRefGoogle Scholar
  16. 16.
    D. Khulmann-Wilsdorf, Mater. Sci. Eng. A A113, 1 (1989).Google Scholar
  17. 17.
    D. A. Hughes, Acta metall. mater. 41, 1421 (1993).CrossRefGoogle Scholar
  18. 18.
    S. M. Copley and B. H. Kear, Acta metall. 16, 227 (1968).CrossRefGoogle Scholar
  19. 19.
    D. Goodchild and W. T. Roberts, Acta metall. 18, 1137 (1970).CrossRefGoogle Scholar
  20. 20.
    S. Allain, J.-P. Chateau, D. Dahmoun and O. Bouaziz, Mater. Sci. Eng. A A387–389, 272 (2004).Google Scholar
  21. 21.
    J. P. Hirth and J. Lothe, Theory of Dislocations, Chap. 10, McGraw-Hill, New York (1968).Google Scholar
  22. 22.
    J. P. Hirth and J. Lothe, Theory of Dislocations, Chap. 23, McGraw-Hill, New York (1968).Google Scholar
  23. 23.
    A. Dumay, J.-P. Chateau, S. Allain, S. Miget, and O. Bouaziz, Mater. Sci. Eng. A, A483–484, 184 (2008).Google Scholar
  24. 24.
    Y. W. Kim, Seoul National University, private communication (2008).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2010

Authors and Affiliations

  • Kyung-Tae Park
    • 1
    Email author
  • Gyosung Kim
    • 2
  • Sung Kyu Kim
    • 2
  • Sang Woo Lee
    • 3
  • Si Woo Hwang
    • 4
  • Chong Soo Lee
    • 5
  1. 1.Division of Advanced Mater. Sic. & Engr.Hanbat National UniversityDaejonKorea
  2. 2.TWIP Steel Research Project TeamPOSCO Technical Research Lab.GwangyangKorea
  3. 3.Mater. & Systems Engr.Kumoh National Institute of TechnologyGyeongbukKorea
  4. 4.Steel Research InstituteYonsei UniversitySeoulKorea
  5. 5.Department of Mater. Sci. & Engr.POSTECHGyeongbukKorea

Personalised recommendations