Advertisement

The effects of alloying and pressing routes in equal channel angular pressing of Cu-Fe-Cr and Cu-Fe-Cr-Ag composites

  • Young Chul Choi
  • Hyoung Seop Kim
  • Sun Ig HongEmail author
Article

Abstract

Equal channel angular pressing (ECAP) was carried out on Cu-Fe-Cr and Cu-Fe-Cr-Ag composites at room temperature. ECAPed Cu-Fe-Cr and Cu-Fe-Cr-Ag exhibited ultrafine-grained microstructures with the shape and distribution of Fe-Cr phase were dependent on the processing routes. In route A, the initial dendrites of Fe-Cr phase were elongated along the shear direction and developed into filaments, whereas in route Bc the initial dendrites became finer by fragmentation with no pronounced change of the shape. The hardness of ECAPed Cu-Fe-Cr-Ag is greater than that of ECAPed Cu-Fe-Cr. The higher hardness in Cu-Fe-Cr-Ag is ascribed to the more effective matrix strengthening due to the dislocation storage and the precipitation hardening. The hardness of ECAPed Cu-Fe-Cr was lower than that of the drawn Cu-Fe-Cr at the same deformation strain because of the less effective refinement and elongation of the two-phase filamentary microstructure. The addition of silver was found to increase the hardness of the ECAPed composite above the strength level of heavily drawn Cu-Fe-Cr, rendering the processing method of applying alloying and ECAP to Cu-Fe-Cr composite an attractive approach to producing bulky high strength Cu base composites.

Keywords

Cu-Fe-Cr composite ECAP drawing hardness microstructure strengthening 

References

  1. 1.
    U. Hangen and D. Raabe, Acta metall. mater. 43, 4075 (1995).CrossRefGoogle Scholar
  2. 2.
    W. A. Spitzig, A. R. Pelton, and F. C. Laabs, Acta metall. 35, 2427 (1987).CrossRefGoogle Scholar
  3. 3.
    J. D. Verhoeven, L. S. Chumbley, F. C. Laabs, and W. A. Spitzig, Acta metall. mater. 39, 2825 (1991).CrossRefGoogle Scholar
  4. 4.
    C. Biselli and D. G. Morris, Acta mater. 44, 493 (1996).CrossRefGoogle Scholar
  5. 5.
    P. D. Funkenbusch and T. H. Courtney, Acta metall. 33, 913 (1985).CrossRefGoogle Scholar
  6. 6.
    L. Thilly, F. Lecouturier, and J. von Stebut, Acta mater. 50, 5049 (2002).CrossRefGoogle Scholar
  7. 7.
    S. I. Hong, Scripta mater. 39, 1685 (1998).CrossRefGoogle Scholar
  8. 8.
    S. I. Hong and M. A. Hill, Mater. Sci. Eng. A 281, 189 (2000).CrossRefGoogle Scholar
  9. 9.
    S. I. Hong and J. S. Song, Metall. Mater. Trans. A 32, 985 (2001).CrossRefGoogle Scholar
  10. 10.
    S. I. Hong, Adv. Eng. Mater. 3, 475 (2001).CrossRefGoogle Scholar
  11. 11.
    S. I. Hong and M. A. Hill, Scripta mater. 42, 737 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
  13. 13.
    Y. G. Kim, B. Hwang, S. Lee, C. W. Lee, and D. H. Shin, J. Kor. Inst. Met. & Mater. 46, 545 (2008).Google Scholar
  14. 14.
    M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Mater. Sci. Eng. A 241, 122 (1998).CrossRefGoogle Scholar
  15. 15.
    W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong, and J. D. Lee, Acta mater. 51, 3293 (2003).CrossRefGoogle Scholar
  16. 16.
    H. S. Kim, S. I. Hong, and M. H. Seo, J. Mater. Res. 16, 856 (2001).CrossRefADSGoogle Scholar
  17. 17.
    S. C. Yoon, C. H. Bok, S. I. Hong, and H. S. Kim, J. Kor. Inst. Met. & Mater. 45, 473 (2007).Google Scholar
  18. 18.
    M. Furukawa, Z. Horita, and T. G. Langdon, Met. Mater. Int. 9, 141 (2003).CrossRefGoogle Scholar
  19. 19.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta mater. 46, 3317 (1998).CrossRefGoogle Scholar
  20. 20.
    V. M. Segal, K. T. Hartwig, and R. E. Goforth, Mater. Sci. Eng. A 224, 107 (1997).CrossRefGoogle Scholar
  21. 21.
    J. S. Song, S. I. Hong, and Y. G. Park, J. Alloy. Compd. 388, 69 (2005).CrossRefGoogle Scholar
  22. 22.
    S. I. Hong, G. T. Gray III, and J. J. Lewandowski, Acta metall. mater. 41, 2337 (1993).CrossRefGoogle Scholar
  23. 23.
    S. I. Hong, H. Inui, and C. Laird, Acta metall. mater. 40, 397 (1992).CrossRefGoogle Scholar
  24. 24.
    S. I. Hong and C. Laird, Acta metall. mater. 38, 1581 (1990).CrossRefGoogle Scholar
  25. 25.
    J. S. Song, Ph.D. Thesis, p. 20–45, Chungnam National University, Daejeon (1990).Google Scholar
  26. 26.
    S. I. Hong, M. A. Hill, and H. S. Kim, Metall. Mater. Trans. A 31, 2457 (2000).CrossRefGoogle Scholar
  27. 27.
    S. I. Hong, J. H. Chung, and H. S. Kim, Key Eng. Mater. 183–187, 1207 (2000).CrossRefGoogle Scholar
  28. 28.
    S. I. Hong and M. A. Hill, Acta mater. 46, 4111 (1998).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2009

Authors and Affiliations

  • Young Chul Choi
    • 1
  • Hyoung Seop Kim
    • 2
  • Sun Ig Hong
    • 1
    Email author
  1. 1.Department of Nano Materials EngineeringChungnam National UniversityDaejeonKorea
  2. 2.Department of Materials Science and EngineeringPOSTECHPohang-si, GyeongbukKorea

Personalised recommendations