Effect of prior microstructures on the behavior of cementite particles during subcritical annealing of medium carbon steels

  • Ui Gu Gang
  • Jong Chul Lee
  • Won Jong NamEmail author


The effect of prior microstructures on the behavior of cementite particles in conjunction with microstructural changes of the matrix during subcritical annealing was investigated by changing the initial microstructures into ferrite + coarse pearlite, ferrite + fine pearlite, bainite, and martensite, in medium carbon steels. While the coarsening of cementite particles in martensite proceeded rapidly with the growth of large cementite particles at boundaries with the dissolution of smaller particles within martensite laths, the coarsening rate of cementite particles in bainite was found to be much slower than that in martensite. This could be attributed to the thermal stability of cementite particles, the smaller amount of carbon in solution, and the lower driving force for solute diffusion due to the uniform size distribution of cementite particles in bainite. The controlling coarsening kinetics in medium carbon steels with ferrite-pearlite, bainite and martensite, were found as boundary diffusion, diffusion along dislocation, a combination of boundary diffusion and diffusion along dislocation, respectively.


subcritical annealing coarsening kinetics cementite ferrite 


  1. 1.
    Y. L. Tian and R. W. Kraft, Met Trans. A. 18A, 1403 (1987).CrossRefGoogle Scholar
  2. 2.
    E. Werner, Acta metall. 37, 2047 (1989).CrossRefGoogle Scholar
  3. 3.
    S. A. Hackney, Scripta metall. 25, 799 (1991).CrossRefGoogle Scholar
  4. 4.
    H. E. Cline, Acta metall. 19, 481 (1971).CrossRefGoogle Scholar
  5. 5.
    W. W. Mullins, Trans. AIME. 218, 354 (1960).Google Scholar
  6. 6.
    Y. G. Nakagawa and G. C. Weatherly, Met. Trans. A 3, 3223 (1972).CrossRefGoogle Scholar
  7. 7.
    T. H. Courtney and J. C. M. Kampe, Acta metall. 37, 1747 (1989).CrossRefGoogle Scholar
  8. 8.
    J. C. M. Kampe, T. H. Courtney, and Y. Leng, Acta metall. 37, 1735 (1989).CrossRefGoogle Scholar
  9. 9.
    Y. L. Tian and R. W. Kraft, Met Trans. A. 18A, 1359 (1987).CrossRefGoogle Scholar
  10. 10.
    V. V. Shkatov, A. P. Chernyshev, and V. I. Lizunov, Phys. Met. Metall. 70, 116 (1990).Google Scholar
  11. 11.
    S. Chattopadhyay and C.M. Sellars, Metallography, 10, 89 (1977).CrossRefGoogle Scholar
  12. 12.
    S. K. Das, A. Biswas, and R. N. Ghosh, Acta metall. mater. 41, 777 (1993).CrossRefGoogle Scholar
  13. 13.
    G. P. Airey, T. A. Hughes, and R. F. Mehl, Trans. AIME., 242, 1853 (1968).Google Scholar
  14. 14.
    T. Mukherjee, W. E. Stumpf, C. M. Sellars, and W. J. McG. Tegart, J. Iron Steel Inst. 207, 621 (1969).Google Scholar
  15. 15.
    B. A. Lindsley and A. R. Marder, Acta mater. 46, 341 (1998).CrossRefGoogle Scholar
  16. 16.
    H. Kreye, Z. Metallkde 61, 108 (1970).Google Scholar
  17. 17.
    R. Honeycombe and H. K. D. H. Bhadeshia, Steels, Microstructure and Properties, p. 131, Arnold, London (1995).Google Scholar
  18. 18.
    F. H. Samuel, Z. Metallkde 75, 774 (1984).Google Scholar
  19. 19.
    Y. Ohmori, H. Ohtani, and T. Kunitake, Metal Sci. 8, 357 (1974).CrossRefGoogle Scholar
  20. 20.
    G. Deep and W. M. Williams, Canadian Metall. Quart. 14, 85 (1975).Google Scholar
  21. 21.
    E. E. Underwood, Microscope 24, 49 (1976).Google Scholar
  22. 22.
    J. Languillaume, G. Kapelski, and B. Baudelet, Acta mater. 45, 1201 (1997).CrossRefGoogle Scholar
  23. 23.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids. 19, 35 (1961).CrossRefADSGoogle Scholar
  24. 24.
    C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
  25. 25.
    R. W. Heckel and R. L. DeGregorio, Trans. AIME. 233, 2001 (1965).Google Scholar
  26. 26.
    G. P. Airey, T. A. Hughes, and R. F. Mehl, Trans. AIME. 242, 1853 (1968).Google Scholar
  27. 27.
    K. M. Vedula and R. W. Heckel, Met. Trans. A 1, 9 (1970).Google Scholar
  28. 28.
    R. T. DeHoff and C. V. Iswaran, Met. Trans. A 13, 1389 (1982).CrossRefGoogle Scholar
  29. 29.
    A. J. Ardell, Acta metall. 20, 601 (1972).CrossRefGoogle Scholar
  30. 30.
    W. J. Nam and C. M. Bae, Scripta mater. 41, 31 (1999).CrossRefGoogle Scholar
  31. 31.
    R. A. Oriani, Acta metall. 12, 1399 (1964).CrossRefGoogle Scholar
  32. 32.
    C. Li, J. M. Blakely, and A. H. Feingold, Acta metall. 14, 1397 (1966).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2009

Authors and Affiliations

  1. 1.School of Advanced Materials EngineeringKookmin UniversitySeoulKorea

Personalised recommendations