Advertisement

Metals and Materials International

, Volume 15, Issue 3, pp 471–477 | Cite as

Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding

  • Kook-soo Bang
  • Chan Park
  • Hong-chul Jung
  • Jong-bong Lee
Article

Abstract

Submerged arc welding was performed using metal-cored wires and fluxes with different compositions. The effects of wire/flux combination on the chemical composition, tensile strength, and impact toughness of the weld metal were investigated and interpreted in terms of element transfer between the slag and the weld metal, i.e., Δ quantity. Both carbon and manganese show negative Δ quantity in most combinations, indicating the transfer of the elements from the weld metal to the slag during welding. The amount of transfer, however, is different depending on the flux composition. More basic fluxes yield less negative Δ C and Δ Mn through the reduction of oxygen content in the weld metal and presumably higher Mn activity in the slag, respectively. The transfer of silicon, however, is influenced by Al2O3, TiO2 and ZrO2 contents in the flux. Δ Si becomes less negative and reaches a positive value of 0.044 as the oxides contents increase. This is because Al, Ti, and Zr could replace Si in the SiO2 network, leaving more Si free to transfer from the slag to the weld metal. Accordingly, the Pcm index of weld metals calculated from chemical compositions varies from 0.153 to 0.196 depending on the wire/flux combination, and it almost has a linear relationship with the tensile strength of the weld metal.

Keywords

submerged arc welding metal-cored wire flux element transfer weld metal mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Farrow and S. Studholme, Svetsaren No. 1, 33 (2000).Google Scholar
  2. 2.
    K. H. Yoon, J. Y. Kim, and I. H. Hwang, Proc. 2006 Autumn Annual Meeting of KWS, p. 190, KWS, Samcheok, Korea (2006).Google Scholar
  3. 3.
    C. S. Chai and T. W. Eagar, Weld. J. 59, 277s (1980).Google Scholar
  4. 4.
    G. R. Belton, T. J. Moore, and E. S. Tankins, Weld. J. 42, 289s (1963).Google Scholar
  5. 5.
    C. S. Chai and T. W. Eagar, Met. Trans. B 12, 539 (1981).CrossRefGoogle Scholar
  6. 6.
    J. E. Indacochea, M. Blander, N. Christensen, and D. L. Olson, Met. Trans. B 16, 237 (1985).CrossRefGoogle Scholar
  7. 7.
    U. Mitra and T.W. Eagar, Met. Trans. A 15, 217 (1984).CrossRefGoogle Scholar
  8. 8.
    N. Christensen and J. Chipman, WRC Bulletin No. 15, 1 (1953).Google Scholar
  9. 9.
    IIW Doc XIIA-88-74.Google Scholar
  10. 10.
    C. B. Dallam, S. Liu, and D. L. Olson, Weld. J. 64, 140s (1985).Google Scholar
  11. 11.
    P. S. Dunn, C. A. Natalie, and D. L. Olson, J. Mat. Ener. Sys. 8, 176 (1986).Google Scholar
  12. 12.
    H. Their, Proc. Conf. on Weld Pool Chemistry and Metallurgy, p. 271, The Welding Institute, London, UK (1980).Google Scholar
  13. 13.
    M. L. E. Davis, and N. Bailey, Proc. Conf. on Weld Pool Chemistry and Metallurgy, p. 289, The Welding Institute, London, UK (1980).Google Scholar
  14. 14.
    N. G. Fleck, O. Grong, G. R. Edwards, and D. K. Matlock, Weld. J. 65, 113s (1986).Google Scholar
  15. 15.
    S. S. Tuliani, T. Boniszweski, and N. F. Eaton, Weld. Metal. Fab. Aug., 327 (1969).Google Scholar
  16. 16.
    T. H. North, H. B. Bell, A. Nowicki, and I. Craig, Weld. J. 57, 63s (1978).Google Scholar
  17. 17.
    J. Tanaka, T. Kitada, Y. Kunisada, and H. Nakagawa, Proc. Conf. on Weld Pool Chemistry and Metallurgy, p. 279, TWI, London, UK (1980).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2009

Authors and Affiliations

  • Kook-soo Bang
    • 1
  • Chan Park
    • 1
  • Hong-chul Jung
    • 2
  • Jong-bong Lee
    • 2
  1. 1.Division of Advanced Materials Science and EngineeringPukyong National UniversityBusanKorea
  2. 2.Technical Research LaboratoriesPOSCOPohangKorea

Personalised recommendations