Metals and Materials International

, Volume 15, Issue 3, pp 427–437 | Cite as

Microstructure prediction of two-phase titanium alloy during hot forging using artificial neural networks and FE simulation

  • Jeoung Han Kim
  • N. S. Reddy
  • Jong Taek Yeom
  • Jae Keun Hong
  • Chong Soo Lee
  • Nho-Kwang Park


The microstructural evolution of titanium alloy under isothermal and non-isothermal hot forging conditions was predicted using artificial neural networks (ANN) and finite element (FE) simulation. In the present work, the change in phase volume fraction, grain size, and the volume fraction of dynamic globularization were modelled considering hot working conditions. Initially, an ANN model was developed for steady-state phase volume fraction. The input parameters were the alloy chemical composition (Al, V, Fe, O, and N) and the holding temperature, and the output parameter was the alpha/beta phase volume fraction at steady state. The non-steady state phase volume fraction under non-isothermal conditions was subsequently modelled on the basis of 4 input parameters such as initial specimen temperature, die (or environment) temperature, steady-state phase volume fraction at die (or environment) temperature, and elapsed time during forging. Resulting ANN models were coupled with the FE simulation (DEFORM-3D) in order to predict the variation of phase volume fraction during isothermal and non-isothermal forging. In addition, a grain size variation and a globularization model were developed for hot forging. To validate the predicted results from the models, Ti-6Al-4V alloy was hot-worked at various conditions and then the resulting microstructures were compared with simulated data. Comparisons between model predictions and experimental data indicated that the ANN model holds promise for microstructure evolution in two phase Ti-6Al-4V alloy.


artificial neural network Ti alloy phase volume fraction forging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).CrossRefGoogle Scholar
  2. 2.
    M. J. Donarchie Jr., Titanium-A Technical Guide, 2nd ed., p. 5–11, ASM International (2000).Google Scholar
  3. 3.
    N. S. Reddy, Y. H. Lee, J. H. Kim, and C. S. Lee, Met. Mater. Int. 14, 213 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Terlinde and G. Fischer, Beta titanium alloys, in Christoph Leyens and Manfred Peters (eds). Titanium and Titanium Alloys, p. 37–57, WILEY VCH GmbH & Co. KGaA (2003).Google Scholar
  5. 5.
    S. L. Semiatin, V. Seetharaman, I. Weiss, Advances in the Science and Technology of Titanium Alloy Processing (eds., I. Weiss, R. Srinivasan, P. J. Bania, D. Eylon, and S. L. Semiatin), p. 3–73, TMS, Warrendale, USA (1996).Google Scholar
  6. 6.
    S. L. Semiatin, F. Montheillet, G. Shen, and J. J. Jonas, Metall. Mater. Trans. A 33, 2719 (2002).CrossRefGoogle Scholar
  7. 7.
    J. H. Kim, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 394, 366 (2005).CrossRefGoogle Scholar
  8. 8.
    E. J. Dayhoff, Neural Network Architecture: An Introduction, VNR Press, New York, USA (1990).Google Scholar
  9. 9.
    J. M. Zurada, Introduction to Artificial Neural Systems, PWS Publishing Company, Boston, USA (1992).Google Scholar
  10. 10.
    N. S. Reddy, C. S. Lee, J. H. Kim, and S. L. Semiatin, Mater. Sci. Eng. A 434, 218 (2006).CrossRefGoogle Scholar
  11. 11.
    J. M. Schooling, M. Brown, and P. A. S. Reed, Mater. Sci. Eng. A 260, 222 (1999).CrossRefGoogle Scholar
  12. 12.
    A. Li, H. Li, K. Li, and Z. Gu, Acta mater. 52, 299 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Castro and L. Seraphin, Mem. Sci. Rev. Metall. 63, 1025 (1966).Google Scholar
  14. 14.
    Y. T. Lee and G. Welsch, Mater. Sci. Eng. A 128, 77 (1990).CrossRefGoogle Scholar
  15. 15.
    M. Jain, M. C. Chaturvedi, N. L. Richards, and N. C. Goel, Mater. Sci. Eng. A 145, 205 (1991).CrossRefGoogle Scholar
  16. 16.
    S. Malinov, P. Markovsky, W. Sha, and Z. Guo, J. Alloy. Compd. 314, 181 (2001).CrossRefGoogle Scholar
  17. 17.
    M. L. Meier, D. R. Lesuer, and A. K. Mukherjee, Mater. Sci. Eng. A 154, 165 (1992).CrossRefGoogle Scholar
  18. 18.
    Y. H. Lee, S. I. Hong, and C. S. Lee, Unpublished data, POSTECH, Korea (2004).Google Scholar
  19. 19.
    R. Boyer, G. Welsch, and E. W. Collings, Material Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH 44073 (1994).Google Scholar
  20. 20.
    S. L. Semiatin and T. R. Bieler, Acta mater. 49, 3565 (2001).CrossRefGoogle Scholar
  21. 21.
    J. H. Kim, S. L. Semiatin, and C. S. Lee, Acta mater. 51, 5613 (2003).CrossRefGoogle Scholar
  22. 22.
    S. L. Semiatin, V. Seetharaman, and I. Weiss, Mater. Sci. Eng. A 263, 257 (1999).CrossRefGoogle Scholar
  23. 23.
    I. Weiss, F. H. Froes, D. Eylon, G. E. Welsch, Metall. Mater. Trans. A 17, 1935 (1986).CrossRefADSGoogle Scholar
  24. 24.
    C. H. Park, Y. G. Ko, and C. S. Lee, The 20 th Conference on Mechanical Behaviours of Materials, Korea Institute of Metals and Materials, Korea (2006).Google Scholar
  25. 25.
    J. H. Kim, N. S. Reddy, J. T. Yeom, N. K. Park, and C. S. Lee, J. Mech. Sci. Tech. 21, 1338 (2007).CrossRefGoogle Scholar
  26. 26.
    C. H. Johnson, S. K. Richter, C. H. Hamilton, and J. J. Hoyt, Acta mater. 47, 23 (1999).CrossRefGoogle Scholar
  27. 27.
    J. D. Miller and S. L. Semiatin, Metall. Mater. Trans. A 36, 259 (2005).CrossRefGoogle Scholar
  28. 28.
    D. S. Fields and W. A. Backofen, Proc. ASTM 57, 1259 (1957).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2009

Authors and Affiliations

  • Jeoung Han Kim
    • 1
  • N. S. Reddy
    • 2
  • Jong Taek Yeom
    • 1
  • Jae Keun Hong
    • 1
  • Chong Soo Lee
    • 3
  • Nho-Kwang Park
    • 1
  1. 1.Korea Institute of Materials ScienceGyeongnamKorea
  2. 2.Alternative Technology Laboratory, Graduate Institute of Ferrous Technology (GIFT)Pohang University of Science and TechnologyGyeongnamKorea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and TechnologyGyeongnamKorea

Personalised recommendations