A nanoindentation study on the micromechanical characteristics of API X100 pipeline steel

Article

Abstract

The hardness characteristics of constituent micro-phases (ferrite and bainite) in a dual-phase API X100 pipeline steel were analyzed by nanoindentation experiments. The measured nano-hardness of the bainite phase is from 3.8 GPa to 4.9 GPa, which is much higher than that of the ferrite phase, which ranged from 1.75 GPa to 2.3 GPa. With the hardness and volume fraction of each micro-phase, attempts were made to predict the overall hardness by applying a simple rule-of-mixture. A comparison between the predicted overall hardness value and the experimentally measured value revealed that the rule-of-mixture can be successfully applied for prediction purposes. The results are discussed in terms of the grain boundary strengthening effect and the indentation size effect.

Keywords

nanoindentation hardness pipeline steel rule-of-mixture 

References

  1. 1.
    N. Sanderson, R. K. Ohm, and M. Jacobs, Oil Gas J. 97, 54 (1999).Google Scholar
  2. 2.
    K. T. Corbett, R. R. Bowen, and C. W. Peterson, Proceeding of 13 th International Offshore and Polar Engineering Conference, p. 105, The International Society of Offshore and Polar Engineers, Hawaii, USA (2003).Google Scholar
  3. 3.
    A. Glover, J. Zhou, D. Horsley, N. Suzuki, S. Endo, and J. Takehara, Proceeding of 22 nd International Conference on Offshore Mechanics and Arctic Engineering, Art. No. OMAE2003-37429, American Society of Mechanical Engineers, Cancun, Mexico (2003).Google Scholar
  4. 4.
    N. Ishikawa, M. Okatsu, S. Endo, and J. Kondo, Proceeding of 6 th International Pipeline Conference, Art. No. IPC2006-10240, American Society of Mechanical Engineers, Calgary, Canada (2006).Google Scholar
  5. 5.
    N. Ishikawa, S. Endo, and J. Kondo, JFE Technical report 7, 20 (2006).Google Scholar
  6. 6.
    D.-H. Seo, C.-M. Kim, J.-Y. Yoo, and K.-B. Kang, Proceeding of 17 th International Offshore and Polar Engineering Conference, p. 3301, The International Society of Offshore and Polar Engineers, Hawaii, Lisbon, Portugal (2007).Google Scholar
  7. 7.
    N. Suzuki and M. Toyoda, Proceeding of 21 st International Conference on Offshore Mechanics and Arctic Engineering, Art. No. OMAE2003-28253, American Society of Mechanical Engineers, Oslo, Norway (2002).Google Scholar
  8. 8.
    N. Suzuki, R. Muraoka, A. Glover, J. Zhou, and M. Toyoda, Proceeding of 22 nd International Conference on Offshore Mechanics and Arctic Engineering, Art. No. OMAE2003-37145, American Society of Mechanical Engineers, Cancun, Mexico (2003).Google Scholar
  9. 9.
    S. Endo and M. Nagae, ISIJ Int. 36, 95 (1996).CrossRefGoogle Scholar
  10. 10.
    T. Hüper, S. Endo, N. Ishikawa, and K. Osawa, ISIJ Int. 39, 288 (1999).CrossRefGoogle Scholar
  11. 11.
    M. Taya and R. J. Arsenault, Metal Matrix Composites: Thermo-mechanical Behavior, Pergamon Press, NY (1989).Google Scholar
  12. 12.
    N. Chawla and K. K. Chawla, Metal Matrix Composite, Springer, NY (2006).Google Scholar
  13. 13.
    W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefADSGoogle Scholar
  14. 14.
    J. L. Hay and G. M. Pharr, Instrumented Indentation Testing, ASM Handbook, OH, p. 232, (2000).Google Scholar
  15. 15.
    Y. Choi, W. Y. Choo, and D. kwon, Scripta mater. 45, 1401 (2001).CrossRefGoogle Scholar
  16. 16.
    N. X. Randall, C. Julia-Schmutz, J. M. Soro, J. von Stebut, and G. Zacharie, Thin Solid Films 308–309, 297 (1997).CrossRefGoogle Scholar
  17. 17.
    P. J. Jacque, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay, Acta mater. 55, 3681 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Delincé, P. J. Jacques, and T. Pardoen, Acta mater. 54, 3395 (2006).CrossRefGoogle Scholar
  19. 19.
    H. Bei, E. P. George, and G. M. Pharr, Mater. Sci. Eng. A 483–484, 218 (2008).Google Scholar
  20. 20.
    L. Han, H. Hu, D. O. Northwood, and N. Li, Mater. Sci. Eng. A 473, 16 (2008).CrossRefGoogle Scholar
  21. 21.
    Y. Sun, J. Liang, Z.-H Xu, G. Wang, and X. Li, J. Mater. Sci. 19, 514 (2008).Google Scholar
  22. 22.
    B.-W. Choi, D.-H. Seo, J.-Y. Yoo, and J.-I. Jang, J. Mater. Res 24, 816 (2009).CrossRefADSGoogle Scholar
  23. 23.
    J. Gong, H. Miao, and B. Hu, Mat. Sci. Eng. A 372, 207 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Ohmura, K. Sawada, K. Kimura, and T. Suzaki, Mat. Sci. Eng. A 489, 85 (2008).CrossRefGoogle Scholar
  25. 25.
    K. Wu, Z. Li, A. M. Guo, X. He, L. Ahang, A. Fang, and L. Cheng, ISIJ Int. 46, 161 (2006).CrossRefGoogle Scholar
  26. 26.
    Q. Furnémont, M. Kempf, P. J. Jacques, M. Goken, and F. Delannay, Mat. Sci. Eng. A 328, 26 (2002).CrossRefGoogle Scholar
  27. 27.
    K. L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).CrossRefADSGoogle Scholar
  28. 28.
    J. -I. Jang, S. Shim, S. Komazaki, and T. Honda, J. Mater. Res. 22, 175 (2007).CrossRefADSGoogle Scholar
  29. 29.
    W. D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).MATHCrossRefADSGoogle Scholar
  30. 30.
    J. G. Swadener, E. P. George, and G. M. Pharr, J. Mech. Phys. Solids 50, 681 (2002).MATHCrossRefADSGoogle Scholar
  31. 31.
    J.-Y. Kim, S.-K. Kang, J.-J. Lee, J.-I. Jang, Y.-H. Lee, and D. Kwon, Acta mater. 55, 3555 (2007).CrossRefGoogle Scholar
  32. 32.
    J.-Y. Kim, S.-H. Kim, J.-S. Lee, K.-W. Lee, and D. Kwon, Met. Mater. Int. 12, 219 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Netherlands 2009

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulKorea
  2. 2.Technical Research LaboratoriesPOSCOGyeongbukKorea

Personalised recommendations