Exploring the Influence of Parameters on the p53 Response When Single-Stranded Breaks and Double-Stranded Breaks Coexist

  • Aiqing Ma
  • Xianhua DaiEmail author
Original research article


The p53 response to DNA damage is closely related to cell fate decisions. P53 preferentially responds to single-stranded breaks (SSBs) exhibiting a graded response when single-stranded breaks (SSBs) and double-stranded breaks (DSBs) coexist. However, how p53 natural preferential response is affected by kinetic parameters remains to be elucidated. Here, based on the hybrid model I, we computationally searched all the parameters and parameter combinations in the parameter space to identify those that could alter the natural preferential response of p53 when SSBs and DSBs coexist. Firstly, when a single parameter is changed, the parameters that can alter graded response to produce p53 pulse response are production rate of ATM- and Rad3-related kinase(ATR) (beta2), ATR degradation rate (alf2) and ATR-dependent p53 production rate (beta31). Secondly, when double parameters are changed, the combinations of beta2/alf2/beta31 and any other parameters are capable of altering the p53 natural preferential response, and the combination of ataxia-telangiectasia mutated kinase (ATM)-dependent p53 production rate (beta3) and Wip1-dependent p53 degradation rate (alf35) is also capable of altering the p53 natural preferential response. Thirdly, we analyzed the sensitivity of both pulse amplitude and apoptosis to kinetic parameters. We find that pulse amplitude is most sensitive to ATM-dependent p53 production rate (beta3), and apoptosis is more sensitive to damage-dependent ATM production rate (beta1), wip1-dependent ATM degradation rate (alf15), wip1 production rate (beta5) and wip1 degradation rate (alf5). What is more, the smaller the value of alf15/beta5 or the larger the value of beta1/alf5, the more susceptible the cells are to apoptosis. These results provide clues to design more effective and less toxic targeted treatments for cancer.


Single-stranded breaks (SSBs) Double-stranded breaks (DSBs) P53 response Apoptosis Parameter sensitivity analysis 



Aiqing Ma and X. H. Dai designed and implemented the study. Aiqing Ma accomplished the numerical analysis. Aiqing Ma also analyzed the results and drafted the manuscript. All of them participated in the discussion and approved the final manuscript.


This work was supported by the National Natural Science Foundation of China (Grant no. 61872396).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283CrossRefGoogle Scholar
  3. 3.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310PubMedCrossRefGoogle Scholar
  4. 4.
    Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic dna damage responses in aging and cancer. Trends Genet 28(3):128–136PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Meek DW (2004) The p53 response to dna damage. DNA Repair 3(8):1049–1056PubMedCrossRefGoogle Scholar
  6. 6.
    Muller PAJ, Vousden KH (2013) P53 mutations in cancer. Nat Cell Biol 15(1):2–8PubMedCrossRefGoogle Scholar
  7. 7.
    Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9(10):701–713PubMedCrossRefGoogle Scholar
  8. 8.
    Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Batchelor E, Loewer A, Mock C, Lahav G (2011) Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 7(1):488PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lev Bar-Or R, Maya R, Segel LA, Alon U, Levine AJ, Oren M (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci USA 97:11250–11255PubMedCrossRefGoogle Scholar
  11. 11.
    Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150CrossRefGoogle Scholar
  12. 12.
    Batchelor E, Mock C, Bhan I, Loewer A, Lahav G (2008) Recurrent initiation: a mechanism for triggering p53 pulses in response to dna damage. Mol Cell 30(3):277–289PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Aiqing M, Xianhua D (2018) The relationship between DNA single stranded damage response and double-stranded damage response. Cell Cycle 17(1):73–79. CrossRefGoogle Scholar
  14. 14.
    Kent E, Neumann S, Kummer U, Mendes P (2013) What can we learn from global sensitivity analysis of biochemical systems. Plos One 8(11):e79244–e79244PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bi YH, Yang ZQ, He XY (2016) Global dynamics and stability of p53-mdm2 oscillator mediated by mdm2 production rate. Acta Phys Sin 65(2):028701Google Scholar
  16. 16.
    Ingalls BP, Sauro HM (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 222(1):23–36PubMedCrossRefGoogle Scholar
  17. 17.
    Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cuba CE, Valle AR, Ayalacharca G, Villota ER, Coronado AM (2015) Influence of parameter values on the oscillation sensitivities of two p53–mdm2 models. Syst Synth Biol 9(3):1–8CrossRefGoogle Scholar
  19. 19.
    Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2(1):2006.0033PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Loewer A, Batchelor E, Gaglia G, Lahav G (2010) Basal dynamics of p53 reveals transcriptionally attenuated pulses in cycling cells. Cell 142(1):89–100PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wilkins AK, Tidor B, White J, Barton PI (2009) Sensitivity analysis for oscillating dynamical systems. SIAM J Sci Comput 31(4):2706–2732PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhang LW, Cheng YM, Liew KM (2014) A mathematical study of the robustness of g2/m regulatory network in response to dna damage with parameters sensitivity. Appl Math Comput 232:365–374Google Scholar
  23. 23.
    Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA et al (2007) Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130(4):624PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Samuelslev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S et al (2001) Aspp proteins specifically stimulate the apoptotic function of p53. Mol Cell 8(4):781CrossRefGoogle Scholar
  25. 25.
    Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827PubMedCrossRefGoogle Scholar
  26. 26.
    Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G (2016) Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell 165(3):631–642PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhang XP, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106(30):12245–12250PubMedCrossRefGoogle Scholar
  28. 28.
    Shreeram Sathyavageeswaran, Demidov Oleg, Hee N, Weng K et al (2006) Wip1 phosphatase modulates atm-dependent signaling pathways. Mol Cell 23(5):757–764CrossRefGoogle Scholar
  29. 29.
    Shreeram S, Hee WK, Demidov ON, Kek C, Yamaguchi H, Jr FA et al (2006) Regulation of atm/p53-dependent suppression of myc-induced lymphomas by wip1 phosphatase. J Exp Med 203(13):2793–2799PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gilmartin AG, Faitg TH, Richter M, Groy A, Seefeld MA, Darcy MG et al (2014) Allosteric wip1 phosphatase inhibition through flap-subdomain interaction. Nat Chem Biol 10(3):181–187PubMedCrossRefGoogle Scholar
  31. 31.
    Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC et al (2002) Oncogenic properties of ppm1d located within a breast cancer amplification epicenter at 17q23. Nat Genet 31(2):133–134CrossRefGoogle Scholar
  32. 32.
    Saitoohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T et al (2003) Ppm1d is a potential target for 17q gain in neuroblastoma. Cancer Res 63(8):1876–1883Google Scholar
  33. 33.
    Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE et al (2015) Genomic and protein expression profiling identifies cdk6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 23(34):8853–8862CrossRefGoogle Scholar
  34. 34.
    Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjärvi T, Kallioniemi A (2006) The serine-threonine protein phosphatase ppm1d is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95(3):257–263PubMedCrossRefGoogle Scholar
  35. 35.
    Fuku T, Semba S, Yutori H, Yokozaki H (2007) Increased wild-type p53-induced phosphatase 1 (wip1 or ppm1d) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathol Int 57(9):566–571PubMedCrossRefGoogle Scholar
  36. 36.
    Tan DSP, Lambros MBK, Rayter S, Natrajan R, Vatcheva R, Gao Q et al (2009) Ppm1d is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15(7):2269–2280PubMedCrossRefGoogle Scholar
  37. 37.
    Yoda A, Toyoshima K, Watanabe Y, Onishi N, Hazaka Y, Tsukuda Y et al (2008) Arsenic trioxide augments chk2/p53-mediated apoptosis by inhibiting oncogenic wip1 phosphatase. J Biol Chem 283(27):18969–18979PubMedCrossRefGoogle Scholar
  38. 38.
    Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al (2002) Amplification of ppm1d in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31(2):210–215CrossRefGoogle Scholar
  39. 39.
    Castellino RC, Bortoli MD, Lu X, Moon SH, Nguyen TA, Shepard MA et al (2008) Medulloblastomas overexpress the p53-inactivating oncogene wip1/ppm1d. J Neurooncol 86(3):245–256PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H et al (2010) Oncogenic wip1 phosphatase is inhibited by mir-16 in the dna damage signaling pathway. Cancer Res 70(18):7176–7186PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Baxter EW, Milner J (2010) P53 regulates lif expression in human medulloblastoma cells. J Neurooncol 97(3):373–382PubMedCrossRefGoogle Scholar
  42. 42.
    Liu B, Bhatt D, Oltvai ZN, Greenberger JS, Bahar I (2014) Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Sci Rep 4(1):6245PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wu M, Hui Y, Tang Z, Chang S, Lu G, Chen B et al (2017) P53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell Death Dis 8(10):e3130PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining networktopologies that can achieve biochemical adaptation. Cell 138(4):760PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) P53 dynamics control cell fate. Science 336(6087):1440–1444PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas 2019

Authors and Affiliations

  1. 1.School of Electronics and Information TechnologySun Yat-Sen UniversityGuangzhouChina

Personalised recommendations