Advertisement

Functional Annotation and Analysis of Dual Oxidase 1 (DUOX1): a Potential Anti-pyocyanin Immune Component

  • Muhammad Ibrahim Rashid
  • Amjad Ali
  • Saadia AndleebEmail author
Original Research Article

Abstract

Dual Oxidase 1 (DUOX1) is a prominent immune system component primarily expressed in esophagus, lungs, skin, and urinary bladder including others. DUOX1 is involved in lactoperoxidase-mediated innate immunity at mucosal surfaces by generation of antimicrobial hypothiocyanite at the apical surface of epithelial lining. Upon detection of bacterial pathogens mainly Pseudomonas aeruginosa, DUOX1 is activated in bronchial epithelial cells. Both the host and pathogen enter a redox dual with DUOX1 and hypothiocyanite from host and Pyocyanin (PCN) as a redox active virulence factor from P. aeruginosa. The synergy of the both enzymes permanently oxidizes PCN and thus holds the potential to prevent PCN-induced virulence, which otherwise paves the way for establishment of persistent chronic infection. In this study, we structurally and functionally annotated the DUOX1, predicted its 3d structure, physio-chemical properties, post-translational modifications, and genetic polymorphism analysis with subsequent disease-associated single-nucleotide variations and their impact on DUOX1 functionality by employing in silico approaches. DUOX1 holds greater homology with gorilla and chimpanzee than other primates. The localization signal peptide was present at the beginning of the peptide with cleavage site at 22 aa position. Three distinct functional domains were observed based on homology: An_peroxidase, FRQ1, and oxido-reductase domains. Polymorphism analysis revealed > 60 SNPs associated with different cancers with probable damaging effects. No cancer-associated methylated island was observed for DUOX1. Three-dimensional structure was developed via homology modeling strategy. The proper annotation will help in characterization of DUOX1 and enhance our knowledge of its functionality and biological roles.

Keywords

Dual oxidase 1 Pulmonary infection Pseudomonas aeruginosa Protein annotation 

Supplementary material

12539_2018_308_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 135 KB)

References

  1. 1.
    Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298PubMedCrossRefGoogle Scholar
  2. 2.
    Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125CrossRefGoogle Scholar
  3. 3.
    Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48:1–25.  https://doi.org/10.1007/s10489-018-1190-6 CrossRefGoogle Scholar
  4. 4.
    Bruce Alberts AJ, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  5. 5.
    Damiano S et al (2012) Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS One 7(4):e34405PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ameziane-El-Hassani R et al (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 280(34):30046–30054PubMedCrossRefGoogle Scholar
  7. 7.
    Rada B, Leto TL (2010) Characterization of hydrogen peroxide production by Duox in bronchial epithelial cells exposed to Pseudomonas aeruginosa. FEBS letters 584(5):917–922PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Strengert M et al (2014) Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 20(17):2695–2709PubMedCrossRefGoogle Scholar
  9. 9.
    Edens WA et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154(4):879–892PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sigrist CJ et al (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060–4066PubMedCrossRefGoogle Scholar
  11. 11.
    Wesley UV et al (2007) Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282(5):3213–3220PubMedCrossRefGoogle Scholar
  12. 12.
    Rada B et al (2008) The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181(7):4883–4893PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Harper RW et al (2005) Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 579(21):4911–4917PubMedCrossRefGoogle Scholar
  14. 14.
    Gattas MV et al (2009) Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic Biol Med 47(10):1450–1458PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Raoust E et al (2009) Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One 4(10):e7259PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Caldwell CC et al (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175(6):2473–2488PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Britigan BE, Railsback MA, Cox CD (1999) The Pseudomonas aeruginosa secretory product pyocyanin inactivates α1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infect Immun 67(3):1207–1212PubMedPubMedCentralGoogle Scholar
  18. 18.
    Allen L et al (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174(6):3643–3649PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Manago A et al (2015) Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxidants Redox Signal 22(13):1097–1110CrossRefGoogle Scholar
  20. 20.
    Hall S et al (2016) Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8(8):236PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513PubMedCrossRefGoogle Scholar
  22. 22.
    Reszka KJ et al (2004) Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radic Biol Med 36(11):1448–1459PubMedCrossRefGoogle Scholar
  23. 23.
    Fernandes M et al (2016) Extensively and pan-drug resistant Pseudomonas aeruginosa keratitis: clinical features, risk factors, and outcome. Graefes Arch Clin Exp Ophthalmol 254(2):315–322PubMedCrossRefGoogle Scholar
  24. 24.
    McWilliam H et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(W1):W597–W600PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Garg VK et al (2016) MFPPI–Multi FASTA ProtParam interface. Bioinformation 12(2):74–77PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Emanuelsson O et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971PubMedCrossRefGoogle Scholar
  27. 27.
    Gasteiger E et al. (2005) Protein identification and analysis tools on the ExPASy server. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Peterson TA et al (2010) DMDM: domain mapping of disease mutations. Bioinformatics 26(19):2458–2459PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wu TJ et al. (2014) A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE). Database (Oxford) 2014:bau022CrossRefGoogle Scholar
  30. 30.
    Pan Y et al (2014) Human germline and pan-cancer variomes and their distinct functional profiles. Nucleic Acids Res 42(18):11570–11588PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081PubMedCrossRefGoogle Scholar
  32. 32.
    Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Adzhubei IA et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yu C-S et al (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One 9(6):e99368PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    He X et al (2008) MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 36(Database issue):D836–D841PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schumacher A et al (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 34(2):528–542PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rollins RA et al (2006) Large-scale structure of genomic methylation patterns. Genome Res 16(2):157–163PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bradbury J (2003) Human epigenome project-up and running. PLoS Biol 1(3):E82PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Amoreira C, Hindermann W, Grunau C (2003) An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res 31(1):75–77PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3(3):235–240PubMedGoogle Scholar
  43. 43.
    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Julenius K (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17(8):868–876PubMedCrossRefGoogle Scholar
  45. 45.
    Kiemer L et al (2004) Coronavirus 3CL pro proteinase cleavage sites: Possible relevance to SARS virus pathology. BMC Bioinform 5(1):72CrossRefGoogle Scholar
  46. 46.
    Johansen MB, Kiemer L, Brunak S (2006) Analysis and prediction of mammalian protein glycation. Glycobiology 16(9):844–853PubMedCrossRefGoogle Scholar
  47. 47.
    Gupta RE, Jung E, Brunak S (2004) Predicition of N-glycosylation sites in human proteins. Center for Biological Sequence Analysis at Technical University of Denmark DTUGoogle Scholar
  48. 48.
    Steentoft C et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Blom N et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649CrossRefGoogle Scholar
  50. 50.
    Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Design Se 17(1):107–112CrossRefGoogle Scholar
  51. 51.
    Szklarczyk D et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(suppl 1):D561–D568CrossRefGoogle Scholar
  52. 52.
    Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723CrossRefGoogle Scholar
  53. 53.
    Lovell S et al (2003) Structure validation by Calpha geometry: phi, psi, and Cbeta deviation. Proteins 50:437e450CrossRefGoogle Scholar
  54. 54.
    BIOVIA DS (2015) Discovery studio modeling environment, release 4.5. Dassault Systèmes, San DiegoGoogle Scholar
  55. 55.
    Tyurin-Kuzmin PA et al (2016) Nox4 and Duox1/2 mediate redox activation of mesenchymal cell migration by PDGF. PLoS One 11(4):e0154157PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gingerich A et al (2016) Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus. Inflamm Res 65(1):71–80PubMedCrossRefGoogle Scholar
  57. 57.
    Chang S et al (2013) Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med 65:38–46PubMedCrossRefGoogle Scholar
  58. 58.
    Cho DY et al (2013) Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis. Int Forum Allergy Rhinol 3(5):376–383PubMedCrossRefGoogle Scholar
  59. 59.
    Van Der Vliet A et al (2016) Airway epithelial DUOX1 mediates EGFR activation, mucus metaplasia, and remodeling during allergic asthma, in A13. NOVEL INNATE IMMUNE PATHWAYS IN SEVERE ASTHMA. Am Thoracic Soc A1004. Am J Respir Crit Care Med 193:A1004. https://www.atsjournals.org/doi/pdf/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A1004 Google Scholar
  60. 60.
    Chai W et al (2014) Pseudomonas pyocyanin stimulates IL-8 expression through MAPK and NF-kappaB pathways in differentiated U937 cells. BMC Microbiol 14:26PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rada B, Leto TL (2010) Characterization of hydrogen peroxide production by Duox in bronchial epithelial cells exposed to Pseudomonas aeruginosa. FEBS Lett 584(5):917–922PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kwon J et al (2010) The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci Signal 3(133):ra59PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Danyal K et al (2016) Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. Am J Physiol Lung Cell Mol Physiol 311(5):L913–L923PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Little A et al (2016) DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis 5(10):e261PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Little AC et al (2016) DUOX1 expression in lung cancer disrupts pro-oncogenic activation mechanisms and localization of Src and EGFR. AACR, PhiladephiaGoogle Scholar
  66. 66.
    Chen S et al (2016) Dual oxidase 1: a predictive tool for the prognosis of hepatocellular carcinoma patients. Oncol Rep 35(6):3198–3208PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ameziane-El-Hassani R et al (2015) NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci USA 112(16):5051–5056PubMedCrossRefGoogle Scholar
  68. 68.
    Choi H et al (2014) Hydrogen peroxide generated by DUOX1 regulates the expression levels of specific differentiation markers in normal human keratinocytes. J Dermatol Sci 74(1):56–63PubMedCrossRefGoogle Scholar
  69. 69.
    Fischer H et al (2007) Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 292(6):L1506–L1514PubMedCrossRefGoogle Scholar
  70. 70.
    Fagerberg L et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom 13(2):397–406CrossRefGoogle Scholar
  71. 71.
    Pongnimitprasert N et al (2008) Potential role of the “NADPH oxidases” (NOX/DUOX) family in cystic fibrosis. Ann Biol Clin (Paris) 66(6):621–629Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations