Quantum Calculations on Plant Cell Wall Component Interactions

  • Hui Yang
  • Heath D. Watts
  • Virgil Gibilterra
  • T. Blake Weiss
  • Loukas Petridis
  • Daniel J. Cosgrove
  • James D. KubickiEmail author
Original Research Article


Density functional theory calculations were performed to assess the relative interaction energies of plant cell wall components: cellulose, xylan, lignin and pectin. Monomeric and tetramer linear molecules were allowed to interact in four different configurations for each pair of compounds. The M05-2X exchange-correlation functional which implicitly accounts for short- and mid-range dispersion was compared against MP2 and RI-MP2 to assess the reliability of the former for modeling van der Waals forces between these PCW components. Solvation effects were examined by modeling the interactions in the gas phase, in explicit H2O, and in polarized continuum models (PCM) of solvation. PCMs were used to represent water, methanol, and chloroform. The results predict the relative ranges of each type of interaction and when specific configurations will be strongly preferred. Structures and energies are useful as a basis for testing classical force fields and as guidance for coarse-grained models of PCWs.


Interaction energies Quantum chemistry Cellulose Xylan Lignin Pectin 



Density functional theory


Plant cell wall


Cellulose microfibril


Cellulose constrained to the crystalline form


Cellulose unconstrained









This work was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090. This research was conducted with Advanced CyberInfrastructure computational resources provided by NERSC, The Institute for CyberScience at The Pennsylvania State University (, and the Texas Advanced Computing Center (TACC). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cosgrove D (2010) Cell walls: structure, biogenesis, and expansion. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer, Sunderland, pp 425–452Google Scholar
  3. 3.
    Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639CrossRefPubMedGoogle Scholar
  5. 5.
    Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn Reson Chem 50:539–550CrossRefPubMedGoogle Scholar
  6. 6.
    Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose–pectin spatial contacts are inherent to never-dried arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water–polysaccharide interactions in the primary cell wall of arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409CrossRefPubMedGoogle Scholar
  8. 8.
    Zykwinska A, Gaillard C, Buléon A, Pontoire B, Garnier C, Thibault JF, Ralet MC (2007) Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods. Biomacromol 8:223–232CrossRefGoogle Scholar
  9. 9.
    Zykwinska A, Thibault JF, Ralet MC (2008) Modelling of xyloglucan, pectins and pectic side chains binding onto cellulose microfibrils. Carbohydr Polym 74:23–30CrossRefGoogle Scholar
  10. 10.
    Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000CrossRefPubMedGoogle Scholar
  11. 11.
    Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79:492–506CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68CrossRefGoogle Scholar
  13. 13.
    Hill SJ, Franich RA, Callaghan PT, Newman RH (2009) Nature’s nanocomposites: a new look at molecular architecture in wood cell walls. N Z J For Sci 39:251–257Google Scholar
  14. 14.
    Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202CrossRefPubMedGoogle Scholar
  15. 15.
    Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23CrossRefGoogle Scholar
  16. 16.
    Kubicki JD, Watts HD, Zhao Z, Zhong L (2014) Quantum mechanical calculations on cellulose–water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of Iα and Iβ cellulose. Cellulose 21:909–926CrossRefGoogle Scholar
  17. 17.
    Watts HD, Mohamed MNA, Kubicki JD (2014) A DFT study of vibrational frequencies and 13C NMR chemical shifts of model cellulosic fragments as a function of size. Cellulose 21:53–70CrossRefGoogle Scholar
  18. 18.
    Watts H, Mohamed M, Kubicki J (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970CrossRefPubMedGoogle Scholar
  19. 19.
    Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666CrossRefGoogle Scholar
  20. 20.
    Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117:2580–2589CrossRefPubMedGoogle Scholar
  21. 21.
    Diehl BG, Watts HD, Kubicki JD, Regner MR, Ralph J, Brown NR (2014) Towards lignin–protein crosslinking: amino acid adducts of a lignin model quinone methide. Cellulose 21:1395–1407CrossRefGoogle Scholar
  22. 22.
    Zhao Z, Crespi VH, Kubicki JD, Cosgrove DJ, Zhong L (2014) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21:1025–1039CrossRefGoogle Scholar
  23. 23.
    Hohenberg P, Kohn W (1964) Inhomogeneous. Electron Gas Phys Rev 136:B864–B871CrossRefGoogle Scholar
  24. 24.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  25. 25.
    Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell, AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages. J Chem Theory Comput 5:2353–2370CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Materials Studio (2007) Release 7.0, Accelrys Software Inc., San DiegoGoogle Scholar
  27. 27.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMedGoogle Scholar
  28. 28.
    Sun HCOMPASS (1998) An AB initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefPubMedGoogle Scholar
  30. 30.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09 Revision E.01. Wallingford, CTGoogle Scholar
  32. 32.
    Raju RK, Ramraj A, Hillier IH, Vincent MA, Burton NA (2009) Carbohydrate–aromatic π interactions: a test of density functionals and the DFT-D method. Phys Chem Chem Phys 11:3411CrossRefPubMedGoogle Scholar
  33. 33.
    Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc Theory Comput Model (Theoretica Chim Acta) 97:331–340Google Scholar
  34. 34.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152CrossRefGoogle Scholar
  35. 35.
    Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117:587–597CrossRefGoogle Scholar
  36. 36.
    Hehre WJ, Ditchfield K, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  37. 37.
    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  40. 40.
    Hariharan PC, Pople JA (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214CrossRefGoogle Scholar
  41. 41.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  42. 42.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21 + G basis set for first-row elements, Li-F. J Comput Chem 4:294–301CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  44. 44.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  45. 45.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297CrossRefPubMedGoogle Scholar
  46. 46.
    Weigend F (2008) Hartree-fock exchange fitting basis sets for H to Rn. J Comput Chem 29:167–175CrossRefPubMedGoogle Scholar
  47. 47.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Unviersal solvation modle based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefPubMedGoogle Scholar
  48. 48.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  49. 49.
    Yang H (2014) Schrödinger Maestro, Release 2014-1. Schrödinger, LLC, New YorkGoogle Scholar
  50. 50.
    Bowers K, Chow E, Xu H, Dror R, Eastwood M, Gregersen B, Klepeis J, Kolossvary I, Moraes M, Sacerdoti F, Salmon J, Shan Y, Shaw D (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE SC 2006 conference (SC’06); IEEE, pp 43–43Google Scholar
  51. 51.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Guvench O, Greenr SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Petridis L, Smith JC (2009) A molecular mechanics force field for lignin. J Comput Chem 30:457–467CrossRefPubMedGoogle Scholar
  55. 55.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  56. 56.
    Haldar S, Gnanasekaran R, Hobza P (2015) c A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion–bound complexes. Phys Chem Chem Phys 17:26645–26652CrossRefPubMedGoogle Scholar
  57. 57.
    Hanus J, Mazeau K (2006) The xyloglucan–cellulose assembly at the atomic scale. Biopolymers 82:59–73CrossRefPubMedGoogle Scholar
  58. 58.
    Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888CrossRefGoogle Scholar
  59. 59.
    Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR (1998) Hydrophobic effects on a molecular scale. J Phys Chem B 102:10469–10482CrossRefGoogle Scholar
  60. 60.
    Lindner B, Petridis L, Schulz R, Smith JC (2013) Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation. Biomacromol 14:3390–3398CrossRefGoogle Scholar
  61. 61.
    Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8:217CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jarvis MC (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220CrossRefPubMedGoogle Scholar
  64. 64.
    Zykwinska A, Thibault JF, Ralet MC (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym 74:957–961CrossRefGoogle Scholar
  65. 65.
    Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514CrossRefPubMedGoogle Scholar
  66. 66.
    Abraham MH (1982) Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect. J Am Chem Soc 104:2085–2094CrossRefGoogle Scholar
  67. 67.
    Sedov IA, Magsumov TI, Solomonov BN (2016) Solvation of hydrocarbons in aqueous–organic mixtures. J Chem Thermodyn 96:153–160CrossRefGoogle Scholar
  68. 68.
    Bakulin AA, Cringus D, Pieniazek PA, Skinner JL, Jansen TLC, Pshenichnikov MS (2013) Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J Phys Chem B 117:15545–15558CrossRefPubMedGoogle Scholar
  69. 69.
    Huang YR, Liu KH, Mou CY, Sun CK (2015) Relaxation dynamics of surface-adsorbed water molecules in nanoporous silica probed by terahertz spectroscopy. Appl Phys Lett 107:081607CrossRefGoogle Scholar
  70. 70.
    Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287:20603–20612CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Yang
    • 1
  • Heath D. Watts
    • 2
  • Virgil Gibilterra
    • 3
  • T. Blake Weiss
    • 3
  • Loukas Petridis
    • 4
  • Daniel J. Cosgrove
    • 1
  • James D. Kubicki
    • 2
    Email author
  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Geological SciencesUniversity of Texas at El PasoEl PasoUSA
  3. 3.Department of Geological SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Center for Molecular BiophysicsOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations