Advertisement

Homology Modeling of 5-alpha-Reductase 2 Using Available Experimental Data

  • Jamal ShamsaraEmail author
Original Research Article

Abstract

5-Alpha-reductase 2 is an interesting pharmaceutical target for the treatment of several diseases, including prostate cancer, benign prostatic hyperplasia, male pattern baldness, acne, and hirsutism. One of the main approaches in computer aided drug design is structure-based drug discovery. However, the experimental 3D structure of 5-alpha-reductase 2 is not available at present. Therefore, a homology modeling method and molecular dynamics simulation were used to develop a reliable model of 5-alpha-reductase 2 for inhibitor pose prediction and virtual screening. Despite the low sequence identity between the target and template sequences, a useful 3D model of 5-alpha-reductase 2 was generated by the inclusion of experimental data.

Keywords

5-Alpha-reductase Computational aided drug design Homology modeling Molecular dynamics Virtual screening 

Notes

Acknowledgements

This work is supported in part by a Grant (BS-1394-01-02) from the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. The authors gratefully acknowledge the Sheikh Bahaei National High Performance Computing Center (SBNHPCC) for providing computing facilities. SBNHPCC is supported by the Scientific and Technological Department of Presidential Office and Isfahan University of Technology (IUT), Iran.

Supplementary material

12539_2017_280_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1485 KB)

References

  1. 1.
    Scaglione A, Montemiglio LC, Parisi G, Asteriti IA, Bruni R, Cerutti G, Testi C, Savino C, Mancia F, Lavia P, Vallone B (2017) Subcellular localization of the five members of the human steroid 5α-reductase family. Biochimie Open 4(Supplement C):99–106PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Azzouni F, Godoy A, Li Y, Mohler J (2012) The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2012:530121.  https://doi.org/10.1155/2012/530121
  3. 3.
    Chaudhary UB, Turner JS (2010) Finasteride. Expert Opinion Drug Metab Toxicol 6(7):873–881CrossRefGoogle Scholar
  4. 4.
    Thomas LN, Douglas RC, Lazier CB, Too CK, Rittmaster RS, Tindall DJ (2008) Type 1 and type 2 5alpha-reductase expression in the development and progression of prostate cancer. Eur Urol 53(2):244–252PubMedCrossRefGoogle Scholar
  5. 5.
    Vemana G, Hamilton RJ, Andriole GL, Freedland SJ (2014) Chemoprevention of prostate cancer. Annu Rev Med 65:111–123PubMedCrossRefGoogle Scholar
  6. 6.
    Wu C, Kapoor A (2013) Dutasteride for the treatment of benign prostatic hyperplasia. Expert Opinion Pharmacother 14(10):1399–1408CrossRefGoogle Scholar
  7. 7.
    Kumar R, Kumar M (2013) 3D-QSAR CoMFA and CoMSIA studies for design of potent human steroid 5α-reductase inhibitors. Med Chem Res 22(1):105–114CrossRefGoogle Scholar
  8. 8.
    Thareja S (2015) Steroidal 5α-reductase inhibitors: a comparative 3D-QSAR study review. Chem Rev 115(8):2883–2894PubMedCrossRefGoogle Scholar
  9. 9.
    Ashwinder K, Kho MT, Chee PM, Lim WZ, Yap IKS, Choi SB, Yam WK (2016) Targeting heat shock proteins 60 and 70 of toxoplasma gondii as a potential drug target: in silico approach. Interdiscip Sci 8(4):374–387PubMedCrossRefGoogle Scholar
  10. 10.
    Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Anand R (2016) Identification of potential antituberculosis drugs through docking and virtual screening. Interdiscip Sci Comput Life Sci.  https://doi.org/10.1007/s12539-016-0175-6
  12. 12.
    Ramezani M, Shamsara J (2017) An integrated structure- and pharmacophore-based MMP-12 virtual screening. Mol Divers (In Press)Google Scholar
  13. 13.
    Ramezani M, Shamsara J (2017) Virtual screening on MMP-13 Led to discovering new inhibitors including a non-zinc binding and a micro molar one: a successful example of receptor selection according to cross-docking results for a flexible enzyme. Comb Chem High Throughput Screen 20:719–725PubMedCrossRefGoogle Scholar
  14. 14.
    Kaur H, Ahmad M, Scaria V (2016) Computational analysis and in silico predictive modeling for inhibitors of PhoP regulon in S. typhi on high-throughput screening bioassay dataset. Interdiscip Sci 8(1):95–101PubMedCrossRefGoogle Scholar
  15. 15.
    Balakrishnan N, Raj JS, Kandakatla N (2016) Discovery of Novel GSK-3β Inhibitors Using Pharmacophore and Virtual Screening Studies. Interdiscip Sci 8(3):303–311PubMedCrossRefGoogle Scholar
  16. 16.
    Shawon J, Khan AM, Rahman A, Hoque MM, Khan MAK, Sarwar MG, Halim MA (2016) Molecular recognition of azelaic acid and related molecules with DNA polymerase I investigated by molecular modeling calculations. Interdiscip Sci Comput Life Sci.  https://doi.org/10.1007/s12539-016-0186-3
  17. 17.
    Shamsara J (2014) A study on druggability of MIA as a promising approach for inhibition of metastasis. Int J Comput Biol Drug Des 7(1):80–95PubMedCrossRefGoogle Scholar
  18. 18.
    Li X, Roberti R, Blobel G (2015) Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 517(7532):104–107PubMedCrossRefGoogle Scholar
  19. 19.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815PubMedCrossRefGoogle Scholar
  20. 20.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  21. 21.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL (2012) MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics 28(9):1278–1279PubMedCrossRefGoogle Scholar
  23. 23.
    Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170PubMedCrossRefGoogle Scholar
  25. 25.
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364): 83–35Google Scholar
  26. 26.
    Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362Google Scholar
  27. 27.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12(5):1073–1086PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71(1):261–277PubMedCrossRefGoogle Scholar
  30. 30.
    Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12(4):345–364Google Scholar
  31. 31.
    Shamsara J (2014) Evaluation of 11 scoring functions performance on matrix metalloproteinases. Int J Med Chem 2014:162150.  https://doi.org/10.1155/2014/162150
  32. 32.
    Ramezani M, Shamsara J (2015) A cross-docking study on matrix metalloproteinase family. Antiinflamm Antiallergy Agents Med Chem 14(3):164–171PubMedCrossRefGoogle Scholar
  33. 33.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107PubMedCrossRefGoogle Scholar
  34. 34.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Design 22(3–4):193–199CrossRefGoogle Scholar
  36. 36.
    Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47(6):2462–2474PubMedCrossRefGoogle Scholar
  37. 37.
    Puranen JS, Vainio MJ, Johnson MS (2010) Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem 31(8):1722–1732PubMedGoogle Scholar
  38. 38.
    Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940–3941PubMedCrossRefGoogle Scholar
  39. 39.
    Forli S (2015) Charting a Path to Success in Virtual Screening. Molecules 20(10):18732–18758PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Deng N, Forli S, He P, Perryman A, Wickstrom L, Vijayan RSK, Tiefenbrunn T, Stout D, Gallicchio E, Olson AJ, Levy RM (2015) Distinguishing Binders from False Positives by Free Energy Calculations: Fragment Screening Against the Flap Site of HIV Protease. J Phys Chem B 119(3):976–988PubMedCrossRefGoogle Scholar
  41. 41.
    Bakshi RK, Rasmusson GH, Patel GF, Mosley RT, Chang B, Ellsworth K, Harris GS, Tolman RL (1995) 4-Aza-3-oxo-5 alpha-androst-1-ene-17 beta-N-aryl-carboxamides as dual inhibitors of human type 1 and type 2 steroid 5 alpha-reductases. Dramatic effect of N-aryl substituents on type 1 and type 2 5 alpha-reductase inhibitory potency. J Med Chem 38(17):3189–3192PubMedCrossRefGoogle Scholar
  42. 42.
    Frye SV, Haffner CD, Maloney PR, Mook RA Jr, Dorsey GF Jr, Hiner RN, Cribbs CM, Wheeler TN, Ray JA, Andrews RC et al (1994) 6-Azasteroids: structure-activity relationships for inhibition of type 1 and 2 human 5 alpha-reductase and human adrenal 3 beta-hydroxy-delta 5-steroid dehydrogenase/3-keto-delta 5-steroid isomerase. J Med Chem 37(15):2352–2360PubMedCrossRefGoogle Scholar
  43. 43.
    Wigley WC, Prihoda JS, Mowszowicz I, Mendonca BB, New MI, Wilson JD, Russell DW (1994) Natural mutagenesis study of the human steroid 5 alpha-reductase 2 isozyme. Biochemistry 33(5):1265–1270PubMedCrossRefGoogle Scholar
  44. 44.
    Baxter FO, Trivic S, Lee IR (2001) Structure-function studies of human 5-alpha reductase type 2 using site directed mutagenesis. J Steroid Biochem Mol Biol 77(2–3):167–175Google Scholar
  45. 45.
    Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ahmed S, Denison S (1998) Mechanism based representation of the active site of 5 alpha-reductase (5AR). Bioorganic Med Chem Lett 8(18):2615–2670CrossRefGoogle Scholar
  47. 47.
    Foye WO, Lemke TL, Williams DA (2008) Foye’s principles of medicinal chemistry, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  48. 48.
    Du H, Brender JR, Zhang J, Zhang Y (2015) Protein structure prediction provides comparable performance to crystallographic structures in docking-based virtual screening. Methods 71:77–84PubMedCrossRefGoogle Scholar
  49. 49.
    Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A (2009) Molecular docking screens using comparative models of proteins. J Chem Inf Model 49(11):2512–2527PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19(7):890–897PubMedCrossRefGoogle Scholar
  51. 51.
    Bhattacharjee B, Talambedu U, Sadegh S, Goyal AK, Pande V, Nagaveni MB, Patil VM, Jayadev J, Middha SK (2011) Computer aided screening of inhibitors to 5α-reductase type 2 for prostate cancer. Bioinformation 6(7):262–265PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jayadeepa RM, Sharma S (2011) Computational models for 5αR inhibitors for treatment of prostate cancer: review of previous works and screening of natural inhibitors of 5αR2. Curr Comput Aided Drug Design 7(4):231–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.School of Biological SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations