Advertisement

Visualizing the Microscopic World

  • Nuno M. F. S. A. Cerqueira
  • Pedro  A. Fernandes
  • Maria João Ramos
Original Research Article

Abstract

Visualization can be a motivating way of teaching students about the microscopic world. This can become even more exciting if the information is based on accurate computational results rather than on crude approximations that eventually might create unreal alternative perceptions. Here, we report on a VMD plug-in, named vmdMagazine, which can turn computational simulations into stunning high-impact video presentations, suitable for classes/lectures and even conferences. The software will help students/audience to understand atoms and molecules better and learn to like them. The present paper is meant to give a general idea of the software’s potential, showing how it works and how it can be used for educational purposes. The software is freely available at: http://www.fc.up.pt/PortoBioComp/database/doku.php?id=vmdmagazine.

Keywords

Computational animations Microscopic world Computer Software 

Notes

Acknowledgements

This work has been funded by FEDER/COMPETE and Fundação para a Ciência e a Tecnologia through Projects PTDC/QUI-QUI/121744/2010 and EXCL/QEQ-COM/0394/2012.

References

  1. 1.
    Cornely K (1998) The use of case studies in an undergraduate biochemistry course. J Chem Educ 75(4):475CrossRefGoogle Scholar
  2. 2.
    Dabrowiak JC, Hatala PJ, McPike MP (2000) A molecular modeling program for teaching structural biochemistry. J Chem Educ 77(3):397–400CrossRefGoogle Scholar
  3. 3.
    Olasagasti F (2010) Introducing the role of enzymes using accurate language. J Chem Educ 87(9):931CrossRefGoogle Scholar
  4. 4.
    Ramos MJ, Fernandes PA (2005) Computer modeling and research in the classroom. J Chem Educ 82(7):1021CrossRefGoogle Scholar
  5. 5.
    Burke KA, Greenbowe TJ, Windschitl MA (1998) developing and using conceptual computer animations for chemistry instruction. J Chem Educ 75(12):1658CrossRefGoogle Scholar
  6. 6.
    Clauss AD, Nelsen SF (2009) Integrating computational molecular modeling into the undergraduate organic chemistry curriculum. J Chem Educ 86(8):955–958CrossRefGoogle Scholar
  7. 7.
    Montgomery CD (2001) Integrating molecular modeling into the inorganic chemistry laboratory. J Chem Educ 78(6):840–844CrossRefGoogle Scholar
  8. 8.
    Carvalho I, Borges ADL, Bernardes LSC (2005) Medicinal chemistry and molecular modeling: an integration to teach drug structure–activity relationship and the molecular basis of drug action. J Chem Educ 82(4):588–596CrossRefGoogle Scholar
  9. 9.
    Wang LH (2012) Using molecular modeling in teaching group theory analysis of the infrared spectra of organometallic compounds. J Chem Educ 89(3):360–364. doi: 10.1021/ed200538c CrossRefGoogle Scholar
  10. 10.
    Pfennig BW, Frock RL (1999) The use of molecular modeling and VSEPR theory in the undergraduate curriculum to predict the three-dimensional structure of molecules. J Chem Educ 76(7):1018–1022CrossRefGoogle Scholar
  11. 11.
    Allen MP (2007) Educational aspects of molecular simulation. Mol Phys 105(2–3):157–166CrossRefGoogle Scholar
  12. 12.
    Muth GW, Chihade JW (2008) A streamlined molecular biology module for undergraduate biochemistry labs. Biochem Mol Biol Educ 36(3):209–216CrossRefPubMedGoogle Scholar
  13. 13.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38CrossRefGoogle Scholar
  14. 14.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cerqueira NM, Fernandes PA, Gonzalez PJ, Moura JJ, Ramos MJ (2013) The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase. Inorg Chem 52(19):10766–10772CrossRefPubMedGoogle Scholar
  16. 16.
    Gesto DS, Cerqueira NM, Fernandes PA, Ramos MJ (2013) Unraveling the enigmatic mechanism of l-asparaginase II with QM/QM calculations. J Am Chem Soc 135(19):7146–7158CrossRefPubMedGoogle Scholar
  17. 17.
    Oliveira EF, Cerqueira NM, Fernandes PA, Ramos MJ (2011) Mechanism of formation of the internal aldimine in pyridoxal 5′-phosphate-dependent enzymes. J Am Chem Soc 133(39):15496–15505CrossRefPubMedGoogle Scholar
  18. 18.
    Viegas A, Bras NF, Cerqueira NM, Fernandes PA, Prates JA, Fontes CM, Bruix M, Romao MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ (2008) Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. FEBS J 275(10):2524–2535CrossRefPubMedGoogle Scholar
  19. 19.
    Cerqueira NM, Fernandes PA, Eriksson LA, Ramos MJ (2004) Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme. J Comput Chem 25(16):2031–2037CrossRefPubMedGoogle Scholar
  20. 20.
    Cerqueira NMFSA, Gonzalez PJ, Fernandes PA, Moura JJG, Ramos MJ (2015) Periplasmic nitrate reductase and formate dehydrogenase. Similar molecular architectures with very different enzymatic activities. Acc Chem Res 48(11):2875–2884CrossRefPubMedGoogle Scholar
  21. 21.
    Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJ, González PJ, Cerqueira NMFSA (2011) The mechanism of formate oxidation by metal-dependent formate dehydrogenases. J Biol Inorg Chem 16(8):1255–1268CrossRefPubMedGoogle Scholar
  22. 22.
    Cerqueira NMFSA, Pakhira B, Sarkar S (2015) Theoretical studies on mechanisms of some Mo enzymes. JBIC 20(2):323–335CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.UCIBIO@REQUIMTEDepartamento de Química e Bioquímica da Faculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations